Endu Sekhar Srinadhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced ionic conductivity of electrospun nanocomposite (PVDFâ€HFP + TiO 2 nanofibers fillers) polymer fibrous membrane electrolyte for DSSC application. Polymer Composites, 2019, 40, 1585-1594.	4.6	101
2	Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceramics International, 2016, 42, 16789-16797.	4.8	42
3	Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications. Ceramics International, 2018, 44, 201-207.	4.8	38
4	β-PVDF based electrospun nanofibers – A promising material for developing cardiac patches. Medical Hypotheses, 2019, 122, 31-34.	1.5	37
5	Magnetic modulation in mechanical alloyed Cr1.4Fe0.6O3oxide. PMC Physics B, 2008, 1, .	0.9	33
6	Conductivity and dielectric permittivity studies of Klâ€based nanocomposite (PEO/PMMA/KI/I ₂ /ZnO nanorods) polymer solid electrolytes. Polymer Composites, 2019, 40, 2919-2928.	4.6	26
7	High conducting nanocomposite electrospun PVDF-HFP/ \$\$hbox {TiO}_{2}\$\$ TiO 2 quasi-solid electrolyte for dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2019, 30, 1199-1213.	2.2	23
8	Structural, electrical and dielectric properties of nanocrystalline LiMgBO3 particles synthesized by Pechini process. Journal of Alloys and Compounds, 2017, 718, 459-470.	5.5	19
9	High Capacity Electrospun MgFe ₂ O ₄ –C Composite Nanofibers as an Anode Material for Lithium Ion Batteries. ChemistrySelect, 2018, 3, 8010-8017.	1.5	19
10	A novel electrospun cobalt-doped zinc oxide nanofibers as photoanode for dye-sensitized solar cell. Materials Research Express, 2019, 6, 025041.	1.6	17
11	Development of novel mechanically stable porous nanocomposite (PVDF-PMMA/HAp/TiO2) film scaffold with nanowhiskers surface morphology for bone repair applications. Materials Letters, 2019, 236, 694-696.	2.6	16
12	Electrospun Sn–SnO2/C composite nanofibers as an anode material for lithium battery applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 11117-11123.	2.2	15
13	Microwave-assisted hydrothermal synthesis of SnO2/reduced graphene-oxide nanocomposite as anode material for high performance lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 14723-14732.	2.2	15
14	Structural, electrical, and dielectric properties of nickel-doped spinel LiMn2O4 nanorods. Ionics, 2019, 25, 981-990.	2.4	15
15	First multicharged ion irradiation results from the CUEBIT facility at Clemson University. AIP Conference Proceedings, 2015, , .	0.4	14
16	Surfactant-free microwave-hydrothermal synthesis of SnO2 flower-like structures as an anode material for lithium-ion batteries. Materialia, 2018, 4, 276-281.	2.7	14
17	Scalable novel PVDF based nanocomposite foam for direct blood contact and cardiac patch applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 270-280.	3.1	14
18	Synthesis, characterization and electrical properties of mesoporous nanocrystalline CoFe2O4 as a negative electrode material for lithium battery applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 17208-17214.	2.2	12

1

#	Article	IF	CITATIONS
19	Symbiotic organism search algorithm for simulation of J-V characteristics and optimizing internal parameters of DSSC developed using electrospun TiO2 nanofibers. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	12
20	Electrospun Nanocomposite Ag–ZnO Nanofibrous Photoanode for Better Performance of Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2019, 48, 4389-4399.	2.2	11
21	The effects of multicharged ion irradiation on a polycarbonate surface. Radiation Effects and Defects in Solids, 2019, 174, 205-213.	1.2	9
22	Encapsulating Ion-Solid Interactions in Metal-Oxide-Semiconductor (MOS) Devices. IEEE Transactions on Nuclear Science, 2015, 62, 3346-3352.	2.0	8
23	Structural and Optical Studies of ZnO Nanostructures Synthesized by Rapid Microwave Assisted Hydrothermal and Solvothermal Methods. Transactions of the Indian Ceramic Society, 2018, 77, 169-174.	1.0	8
24	Fundamentals and Applications of Plasma Cleaning. , 2019, , 289-353.		8
25	Structural characterization, electrical conductivity and open circuit voltage studies of the nanocrystalline La10Si6O27 electrolyte material for SOFCs. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
26	Shape transitions of Cu3Si islands grown on Si(1 1 1) and Si(1 0 0). Applied Surface Science, 2019, 465, 201-206.	6.1	7
27	Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review. Reviews of Adhesion and Adhesives, 2019, 7, 169-194.	3.4	3

Use of Surfactants in Acoustic Cleaning. , 2022, , 193-226.