
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1134073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HADDOCK:Â A Proteinâ~'Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society, 2003, 125, 1731-1737.	6.6	2,642
2	The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. Journal of Molecular Biology, 2016, 428, 720-725.	2.0	2,071
3	The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 2010, 5, 883-897.	5.5	1,167
4	PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 2016, 32, 3676-3678.	1.8	760
5	Refinement of protein structures in explicit solvent. Proteins: Structure, Function and Bioinformatics, 2003, 50, 496-506.	1.5	571
6	Structure and Flexibility Adaptation in Nonspecific and Specific Protein-DNA Complexes. Science, 2004, 305, 386-389.	6.0	506
7	The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nature Structural and Molecular Biology, 2004, 11, 963-967.	3.6	505
8	HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets. Proteins: Structure, Function and Bioinformatics, 2007, 69, 726-733.	1.5	504
9	Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II. Science, 2010, 328, 1168-1172.	6.0	478
10	Sequence co-evolution gives 3D contacts and structures of protein complexes. ELife, 2014, 3, .	2.8	452
11	Contacts-based prediction of binding affinity in protein–protein complexes. ELife, 2015, 4, e07454.	2.8	385
12	Structural Basis for Signal-Sequence Recognition by the Translocase Motor SecA as Determined by NMR. Cell, 2007, 131, 756-769.	13.5	381
13	The α-to-β Conformational Transition of Alzheimer's Aβ-(1-42) Peptide in Aqueous Media is Reversible: A Step by Step Conformational Analysis Suggests the Location of β Conformation Seeding. ChemBioChem, 2006, 7, 257-267.	1.3	375
14	On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Journal of the Royal Society Interface, 2013, 10, 20120835.	1.5	353
15	Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. Journal of Molecular Biology, 2015, 427, 3031-3041.	2.0	348
16	3D-DART: a DNA structure modelling server. Nucleic Acids Research, 2009, 37, W235-W239.	6.5	330
17	RECOORD: A recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins: Structure, Function and Bioinformatics, 2005, 59, 662-672.	1.5	323
18	Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Frontiers in Molecular Biosciences, 2021, 8, 729513.	1.6	308

#	Article	IF	CITATIONS
19	Flexible protein–protein docking. Current Opinion in Structural Biology, 2006, 16, 194-200.	2.6	275
20	CPORT: A Consensus Interface Predictor and Its Performance in Prediction-Driven Docking with HADDOCK. PLoS ONE, 2011, 6, e17695.	1.1	272
21	A structureâ€based benchmark for protein–protein binding affinity. Protein Science, 2011, 20, 482-491.	3.1	252
22	Are Scoring Functions in Proteinâ^'Protein Docking Ready To Predict Interactomes? Clues from a Novel Binding Affinity Benchmark. Journal of Proteome Research, 2010, 9, 2216-2225.	1.8	224
23	Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ. Molecular and Cellular Biology, 2013, 33, 1303-1316.	1.1	219
24	Assessment of contact predictions in CASP12: Coâ€evolution and deep learning coming of age. Proteins: Structure, Function and Bioinformatics, 2018, 86, 51-66.	1.5	174
25	WeNMR: Structural Biology on the Grid. Journal of Grid Computing, 2012, 10, 743-767.	2.5	170
26	Information-driven protein-DNA docking using HADDOCK: it is a matter of flexibility. Nucleic Acids Research, 2006, 34, 3317-3325.	6.5	169
27	A Unified Conformational Selection and Induced Fit Approach to Protein-Peptide Docking. PLoS ONE, 2013, 8, e58769.	1.1	163
28	Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes, 2021, 9, 71.	1.3	162
29	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	1.6	159
30	Computational prediction of protein interfaces: A review of data driven methods. FEBS Letters, 2015, 589, 3516-3526.	1.3	148
31	Prediction of homoprotein and heteroprotein complexes by protein docking and templateâ€based modeling: A CASPâ€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2016, 84, 323-348.	1.5	148
32	Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics, 2006, 22, 2340-2347.	1.8	143
33	Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria. PLoS ONE, 2011, 6, e18127.	1.1	133
34	Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology, 2011, 414, 289-302.	2.0	131
35	Large-scale prediction of binding affinity in protein–small ligand complexes: the PRODIGY-LIG web server. Bioinformatics, 2019, 35, 1585-1587.	1.8	130
36	Dynamic binding mode of a Synaptotagmin-1–SNARE complex in solution. Nature Structural and Molecular Biology, 2015, 22, 555-564.	3.6	129

#	Article	IF	CITATIONS
37	WHISCY: What information does surface conservation yield? Application to data-driven docking. Proteins: Structure, Function and Bioinformatics, 2006, 63, 479-489.	1.5	128
38	A comprehensive framework of E2–RING E3 interactions of the human ubiquitin–proteasome system. Molecular Systems Biology, 2009, 5, 295.	3.2	126
39	Computational approaches to therapeutic antibody design: established methods and emerging trends. Briefings in Bioinformatics, 2020, 21, 1549-1567.	3.2	126
40	Data-driven docking for the study of biomolecular complexes. FEBS Journal, 2005, 272, 293-312.	2.2	125
41	Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. Nature Methods, 2015, 12, 649-652.	9.0	124
42	Conformational Variability of Solution Nucelar Magnetic Resonance Structures. Journal of Molecular Biology, 1995, 250, 80-93.	2.0	123
43	Plasticity in protein-DNA recognition: lac repressor interacts with its natural operator O1 through alternative conformations of its DNA-binding domain. EMBO Journal, 2002, 21, 2866-2876.	3.5	117
44	How Proteins Get in Touch: Interface Prediction in the Study of Biomolecular Complexes. Current Protein and Peptide Science, 2008, 9, 394-406.	0.7	116
45	Building Macromolecular Assemblies by Information-driven Docking. Molecular and Cellular Proteomics, 2010, 9, 1784-1794.	2.5	114
46	NMR Study of Mersacidin and Lipid II Interaction in Dodecylphosphocholine Micelles. Journal of Biological Chemistry, 2003, 278, 13110-13117.	1.6	113
47	Structural Model of the UbcH5B/CNOT4 Complex Revealed by Combining NMR, Mutagenesis, and Docking Approaches. Structure, 2004, 12, 633-644.	1.6	113
48	Data publication with the structural biology data grid supports live analysis. Nature Communications, 2016, 7, 10882.	5.8	113
49	The Solution Structure of the AppA BLUF Domain: Insight into the Mechanism of Light-Induced Signaling. ChemBioChem, 2006, 7, 187-193.	1.3	111
50	NMR analysis of protein interactions. Current Opinion in Chemical Biology, 2005, 9, 501-508.	2.8	109
51	Hydramacin-1, Structure and Antibacterial Activity of a Protein from the Basal Metazoan Hydra. Journal of Biological Chemistry, 2009, 284, 1896-1905.	1.6	107
52	Hydration dynamics of the collagen triple helix by NMR11Edited by P. E. Wright. Journal of Molecular Biology, 2000, 300, 1041-1048.	2.0	103
53	Clustering biomolecular complexes by residue contacts similarity. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1810-1817.	1.5	103
54	Proteins Feel More Than They See: Fine-Tuning of Binding Affinity by Properties of the Non-Interacting Surface. Journal of Molecular Biology, 2014, 426, 2632-2652.	2.0	103

#	Article	IF	CITATIONS
55	Blind prediction of homo―and heteroâ€protein complexes: The CASP13â€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1200-1221.	1.5	99
56	pdb-tools: a swiss army knife for molecular structures. F1000Research, 2018, 7, 1961.	0.8	99
57	Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2. Journal of Computer-Aided Molecular Design, 2018, 32, 175-185.	1.3	97
58	Integrative computational modeling of protein interactions. FEBS Journal, 2014, 281, 1988-2003.	2.2	94
59	DRESS: a database of REfined solution NMR structures. Proteins: Structure, Function and Bioinformatics, 2004, 55, 483-486.	1.5	91
60	Sequence-specific High Mobility Group Box Factors Recognize 10–12-Base Pair Minor Groove Motifs. Journal of Biological Chemistry, 2000, 275, 27266-27273.	1.6	88
61	Membrane proteins structures: A review on computational modeling tools. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2021-2039.	1.4	87
62	Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1980-1987.	1.5	87
63	β-hairpin stability and folding: molecular dynamics studies of the first β-hairpin of tendamistat 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 2000, 296, 255-268.	2.0	86
64	Mass Spec Studio for Integrative Structural Biology. Structure, 2014, 22, 1538-1548.	1.6	86
65	Finding the ΔΔ <i>G</i> spot: Are predictors of binding affinity changes upon mutations in protein–protein interactions ready for it?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1410.	6.2	86
66	The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator. Structure, 1999, 7, 1483-S3.	1.6	84
67	The Vancomycinâ^'Nisin(1â^'12) Hybrid Restores Activity against Vancomycin Resistant Enterococci. Biochemistry, 2008, 47, 12661-12663.	1.2	82
68	Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator 1 1Edited by B. Honig. Journal of Molecular Biology, 1998, 282, 859-873.	2.0	80
69	CASD-NMR: critical assessment of automated structure determination by NMR. Nature Methods, 2009, 6, 625-626.	9.0	80
70	Various strategies of using residual dipolar couplings in NMR-driven protein docking: Application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins: Structure, Function and Bioinformatics, 2005, 60, 367-381.	1.5	78
71	SpotOn: High Accuracy Identification of Protein-Protein Interface Hot-Spots. Scientific Reports, 2017, 7, 8007.	1.6	77
72	Blind Testing of Routine, Fully Automated Determination of Protein Structures from NMR Data. Structure, 2012, 20, 227-236.	1.6	75

#	Article	IF	CITATIONS
73	"Ensemble―iterative relaxation matrix approach: A new NMR refinement protocol applied to the solution structure of crambin. Proteins: Structure, Function and Bioinformatics, 1993, 15, 385-400.	1.5	74
74	The precision of NMR structure ensembles revisited. Journal of Biomolecular NMR, 2003, 25, 225-234.	1.6	74
75	Data-driven docking: HADDOCK's adventures in CAPRI. Proteins: Structure, Function and Bioinformatics, 2005, 60, 232-238.	1.5	74
76	Structural Determinants of Specific Lipid Binding to Potassium Channels. Journal of the American Chemical Society, 2013, 135, 3983-3988.	6.6	73
77	Prediction of protein assemblies, the next frontier: The <scp>CASP14â€CAPRI</scp> experiment. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1800-1823.	1.5	73
78	Human galectin-3 (Mac-2 antigen): Defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 150-161.	1.1	72
79	Extended O-GlcNAc on HLA Class-I-Bound Peptides. Journal of the American Chemical Society, 2015, 137, 10922-10925.	6.6	72
80	Do NOE distances contain enough information to assess the relative populations of multi-conformer structures?. Journal of Biomolecular NMR, 1996, 7, 72-6.	1.6	71
81	Detailed Mechanistic Insights into HIV-1 Sensitivity to Three Generations of Fusion Inhibitors. Journal of Biological Chemistry, 2009, 284, 26941-26950.	1.6	71
82	Integrative Modelling of Biomolecular Complexes. Journal of Molecular Biology, 2020, 432, 2861-2881.	2.0	70
83	Nuclear Magnetic Resonance Solution Structure of the Arc Repressor Using Relaxation Matrix Calculations. Journal of Molecular Biology, 1994, 236, 328-341.	2.0	69
84	Integrative Modeling of Biomolecular Complexes: HADDOCKing with Cryo-Electron Microscopy Data. Structure, 2015, 23, 949-960.	1.6	69
85	Mapping the Targeted Membrane Pore Formation Mechanism by Solution NMR:Â The Nisin Z and Lipid II Interaction in SDS Micelles. Biochemistry, 2002, 41, 7670-7676.	1.2	68
86	Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7071-7076.	3.3	68
87	A protein-DNA docking benchmark. Nucleic Acids Research, 2008, 36, e88-e88.	6.5	67
88	Advances in integrative modeling of biomolecular complexes. Methods, 2013, 59, 372-381.	1.9	67
89	dMM-PBSA: A New HADDOCK Scoring Function for Protein-Peptide Docking. Frontiers in Molecular Biosciences, 2016, 3, 46.	1.6	67
90	A Multidomain Flexible Docking Approach to Deal with Large Conformational Changes in the Modeling of Biomolecular Complexes. Structure, 2011, 19, 555-565.	1.6	65

#	Article	IF	CITATIONS
91	A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition. PLoS Pathogens, 2013, 9, e1003202.	2.1	64
92	Refined Structure oflacRepressor Headpiece (1-56) Determined by Relaxation Matrix Calculations from 2D and 3D NOE Data: Change of Tertiary Structure upon Binding to thelacOperator. Journal of Molecular Biology, 1996, 259, 761-773.	2.0	63
93	Defining the limits of homology modeling in informationâ€driven protein docking. Proteins: Structure, Function and Bioinformatics, 2013, 81, 2119-2128.	1.5	63
94	Sequence-specific HMG box factors recognize 10-12 base pair minor groove motifs. Journal of Biological Chemistry, 2000, 275, 27266-73.	1.6	62
95	Binding Site Structure of One LRP–RAP Complex:Implications for a Common Ligand–Receptor Binding Motif. Journal of Molecular Biology, 2006, 362, 700-716.	2.0	62
96	iScore: a novel graph kernel-based function for scoring protein–protein docking models. Bioinformatics, 2020, 36, 112-121.	1.8	62
97	Insight into cyanobacterial circadian timing from structural details of the KaiB–KaiC interaction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1379-1384.	3.3	61
98	DisVis: quantifying and visualizing accessible interaction space of distance-restrained biomolecular complexes. Bioinformatics, 2015, 31, 3222-3224.	1.8	61
99	Time- and ensemble-averaged direct NOE restraints. Journal of Biomolecular NMR, 1994, 4, 143-9.	1.6	60
100	NMR Relaxation and Internal Dynamics of Ubiquitin from a 0.2 \hat{l} /4s MD Simulation. Journal of Chemical Theory and Computation, 2005, 1, 363-374.	2.3	60
101	Entropy Calculation of HIV-1 Env gp120, its Receptor CD4, and their Complex: An Analysis of Configurational Entropy Changes upon Complexation. Biophysical Journal, 2005, 88, 15-24.	0.2	60
102	Activity–structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. Glycobiology, 2007, 17, 165-184.	1.3	60
103	INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures. Journal of Grid Computing, 2018, 16, 381-408.	2.5	58
104	iSEE: Interface structure, evolution, and energyâ€based machine learning predictor of binding affinity changes upon mutations. Proteins: Structure, Function and Bioinformatics, 2019, 87, 110-119.	1.5	58
105	Understanding the Role of the Josephin Domain in the PolyUb Binding and Cleavage Properties of Ataxin-3. PLoS ONE, 2010, 5, e12430.	1.1	58
106	Mode of action of teixobactins in cellular membranes. Nature Communications, 2020, 11, 2848.	5.8	57
107	A Docking Approach to the Study of Copper Trafficking Proteins. Structure, 2004, 12, 669-676.	1.6	56
108	Characterization and Structural Analyses of Nonspecific Lipid Transfer Protein 1 from Mung Beanâ€,‡. Biochemistry, 2005, 44, 5703-5712.	1.2	56

7

#	Article	IF	CITATIONS
109	Structure of the DNA-bound BRCA1 C-terminal Region from Human Replication Factor C p140 and Model of the Protein-DNA Complex. Journal of Biological Chemistry, 2010, 285, 10087-10097.	1.6	56
110	DeepRank: a deep learning framework for data mining 3D protein-protein interfaces. Nature Communications, 2021, 12, 7068.	5.8	56
111	The solution structure of the human retinoic acid receptor-β DNA-binding domain. Journal of Biomolecular NMR, 1993, 3, 1-17.	1.6	55
112	On the usefulness of ion-mobility mass spectrometry and SAXS data in scoring docking decoys. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 683-694.	2.5	55
113	Two-rung Model of a Left-handed β-Helix for Prions Explains Species Barrier and Strain Variation in Transmissible Spongiform Encephalopathies. Journal of Molecular Biology, 2006, 360, 907-920.	2.0	53
114	The orientations of cytochromecin the highly dynamic complex with cytochromeb5visualized by NMR and docking using HADDOCK. Protein Science, 2005, 14, 799-811.	3.1	52
115	Pushing the limits of what is achievable in protein–DNA docking: benchmarking HADDOCK's performance. Nucleic Acids Research, 2010, 38, 5634-5647.	6.5	51
116	Modeling Protein–Protein Complexes Using the HADDOCK Webserver "Modeling Protein Complexes with HADDOCK― Methods in Molecular Biology, 2014, 1137, 163-179.	0.4	51
117	Modeling Antibody-Antigen Complexes by Information-Driven Docking. Structure, 2020, 28, 119-129.e2.	1.6	51
118	Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions. Nature Communications, 2021, 12, 5769.	5.8	51
119	BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures. Journal of Biomolecular NMR, 2005, 32, 1-12.	1.6	50
120	Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II. PLoS Pathogens, 2013, 9, e1003732.	2.1	50
121	Blind prediction of interfacial water positions in CAPRI. Proteins: Structure, Function and Bioinformatics, 2014, 82, 620-632.	1.5	50
122	The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail. Journal of the American Chemical Society, 2015, 137, 7775-7784.	6.6	50
123	Fast and sensitive rigid-body fitting into cryo-EM density maps with PowerFit. AIMS Biophysics, 2015, 2, 73-87.	0.3	49
124	Model for RNA Binding and the Catalytic Site of the RNase Kid of the Bacterial parD Toxin–Antitoxin System. Journal of Molecular Biology, 2006, 357, 115-126.	2.0	48
125	Importance of lipid–pore loop interface for potassium channel structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13008-13013.	3.3	48
126	Water molecules in DNA recognition I: hydration lifetimes of trp operator DNA in solution measured by NMR spectroscopy 1 1Edited by B. Honig. Journal of Molecular Biology, 1998, 282, 847-858.	2.0	47

#	Article	IF	CITATIONS
127	Gentamicin Binds to the Megalin Receptor as a Competitive Inhibitor Using the Common Ligand Binding Motif of Complement Type Repeats. Journal of Biological Chemistry, 2013, 288, 4424-4435.	1.6	47
128	Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli. EMBO Journal, 2002, 21, 6257-6266.	3.5	46
129	Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of <i>Salmonella typhimurium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1960-1964.	3.3	46
130	Specificity and Affinity of Lac Repressor for the Auxiliary Operators O2 and O3 Are Explained by the Structures of Their Protein–DNA Complexes. Journal of Molecular Biology, 2009, 390, 478-489.	2.0	46
131	Protein–protein HADDocking using exclusively pseudocontact shifts. Journal of Biomolecular NMR, 2011, 50, 263-266.	1.6	46
132	A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces. International Journal of Molecular Sciences, 2016, 17, 1215.	1.8	46
133	PRODIGY: A Contact-based Predictor of Binding Affinity in Protein-protein Complexes. Bio-protocol, 2017, 7, e2124.	0.2	46
134	Kinetics and Thermodynamics of Type VIII β-Turn Formation: A CD, NMR, and Microsecond Explicit Molecular Dynamics Study of the GDNP Tetrapeptide. Biophysical Journal, 2006, 90, 2745-2759.	0.2	44
135	Sense and simplicity in <scp>HADDOCK</scp> scoring: Lessons from <scp>CASP APRI</scp> round 1. Proteins: Structure, Function and Bioinformatics, 2017, 85, 417-423.	1.5	44
136	The DisVis and PowerFit Web Servers: Explorative and Integrative Modeling of Biomolecular Complexes. Journal of Molecular Biology, 2017, 429, 399-407.	2.0	43
137	Less Is More: Coarse-Grained Integrative Modeling of Large Biomolecular Assemblies with HADDOCK. Journal of Chemical Theory and Computation, 2019, 15, 6358-6367.	2.3	43
138	Impaired Peroxisome Proliferator-Activated Receptor γ Function through Mutation of a Conserved Salt Bridge (R425C) in Familial Partial Lipodystrophy. Molecular Endocrinology, 2007, 21, 1049-1065.	3.7	42
139	Direct NOE refinement of biomolecular structures using 2D NMR data. Journal of Biomolecular NMR, 1991, 1, 305-309.	1.6	41
140	Atomic insight into the CD4 binding-induced conformational changes in HIV-1 gp120. Proteins: Structure, Function and Bioinformatics, 2004, 55, 582-593.	1.5	39
141	Combining NMR Relaxation with Chemical Shift Perturbation Data to Drive Protein–protein Docking. Journal of Biomolecular NMR, 2006, 34, 237-244.	1.6	39
142	M3: an integrative framework for structure determination of molecular machines. Nature Methods, 2017, 14, 897-902.	9.0	39
143	Inhibition of the integrated stress response by viral proteins that block p-eIF2–eIF2B association. Nature Microbiology, 2020, 5, 1361-1373.	5.9	39
144	Immunogenicity of Peptide-vaccine Candidates Predicted by Molecular Dynamics Simulations. Journal of Molecular Biology, 2003, 328, 1083-1089.	2.0	37

#	Article	IF	CITATIONS
145	Dataâ€driven homology modelling of Pâ€glycoprotein in the ATPâ€bound state indicates flexibility of the transmembrane domains. FEBS Journal, 2009, 276, 964-972.	2.2	37
146	Characterizing the N- and C-terminal Small Ubiquitin-like Modifier (SUMO)-interacting Motifs of the Scaffold Protein DAXX. Journal of Biological Chemistry, 2011, 286, 19816-19829.	1.6	37
147	Molecular origins of binding affinity: seeking the Archimedean point. Current Opinion in Structural Biology, 2013, 23, 868-877.	2.6	37
148	Strengths and weaknesses of dataâ€driven docking in critical assessment of prediction of interactions. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3242-3249.	1.5	36
149	Rapid prediction of multi-dimensional NMR data sets. Journal of Biomolecular NMR, 2012, 54, 377-387.	1.6	35
150	Information-Driven, Ensemble Flexible Peptide Docking Using HADDOCK. Methods in Molecular Biology, 2017, 1561, 109-138.	0.4	35
151	On the molecular basis of the recognition of angiotensin II (AII). FEBS Journal, 2003, 270, 849-860.	0.2	33
152	Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape. Journal of Chemical Information and Modeling, 2019, 59, 1515-1528.	2.5	33
153	A Flexible, Grid-Enabled Web Portal for GROMACS Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2012, 8, 3463-3472.	2.3	32
154	Pre―and postâ€docking sampling of conformational changes using ClustENM and HADDOCK for proteinâ€protein and proteinâ€DNA systems. Proteins: Structure, Function and Bioinformatics, 2020, 88, 292-306.	1.5	32
155	The GROMOS96 benchmarks for molecular simulation. Computer Physics Communications, 2000, 128, 550-557.	3.0	31
156	Solution Structure of the Ubiquitin-conjugating Enzyme UbcH5B. Journal of Molecular Biology, 2004, 344, 513-526.	2.0	31
157	Integrative modeling of membrane-associated protein assemblies. Nature Communications, 2020, 11, 6210.	5.8	31
158	Toward an NMR R factor. Journal of Magnetic Resonance, 1991, 91, 659-664.	0.5	30
159	HADDOCK _{2P2I} : A Biophysical Model for Predicting the Binding Affinity of Protein–Protein Interaction Inhibitors. Journal of Chemical Information and Modeling, 2014, 54, 826-836.	2.5	30
160	LightDock goes information-driven. Bioinformatics, 2020, 36, 950-952.	1.8	30
161	Information-driven modeling of large macromolecular assemblies using NMR data. Journal of Magnetic Resonance, 2014, 241, 103-114.	1.2	29
162	A benchmark testing ground for integrating homology modeling and protein docking. Proteins: Structure, Function and Bioinformatics, 2017, 85, 10-16.	1.5	29

#	Article	IF	CITATIONS
163	Localisation and dynamics of sodium counterions around DNA in solution from molecular dynamics simulation. European Biophysics Journal, 2000, 29, 57-60.	1.2	28
164	Supramolecular Organization and Functional Implications of K ⁺ â€Channel Clusters in Membranes. Angewandte Chemie - International Edition, 2017, 56, 13222-13227.	7.2	28
165	MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing. Frontiers in Molecular Biosciences, 2019, 6, 102.	1.6	28
166	Modeling Proteinâ^'Protein Complexes Involved in the CytochromecOxidase Copper-Delivery Pathway. Journal of Proteome Research, 2007, 6, 1530-1539.	1.8	27
167	NMRâ€based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids. Proteins: Structure, Function and Bioinformatics, 2007, 69, 177-191.	1.5	27
168	proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking. Bioinformatics, 2020, 36, 5107-5108.	1.8	27
169	Next challenges in protein–protein docking: from proteome to interactome and beyond. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 642-651.	6.2	26
170	Solvated protein–protein docking using Kyteâ€Doolittleâ€based water preferences. Proteins: Structure, Function and Bioinformatics, 2013, 81, 510-518.	1.5	26
171	Structure of the bacterial plant-ferredoxin receptor FusA. Nature Communications, 2016, 7, 13308.	5.8	26
172	Exploring the interplay between experimental methods and the performance of predictors of binding affinity change upon mutations in protein complexes. Protein Engineering, Design and Selection, 2016, 29, 291-299.	1.0	26
173	Sharing Data from Molecular Simulations. Journal of Chemical Information and Modeling, 2019, 59, 4093-4099.	2.5	26
174	PRODIGY-crystal: a web-tool for classification of biological interfaces in protein complexes. Bioinformatics, 2019, 35, 4821-4823.	1.8	26
175	Use of very long-distance NOEs in a fully deuterated protein: an approach for rapid protein fold determination. Journal of Magnetic Resonance, 2003, 163, 228-235.	1.2	25
176	Improving 3D structure prediction from chemical shift data. Journal of Biomolecular NMR, 2013, 57, 27-35.	1.6	25
177	Conformational Plasticity of the POTRA 5 Domain in the Outer Membrane Protein Assembly Factor BamA. Structure, 2015, 23, 1317-1324.	1.6	25
178	Distinguishing crystallographic from biological interfaces in protein complexes: role of intermolecular contacts and energetics for classification. BMC Bioinformatics, 2018, 19, 438.	1.2	25
179	SAMPLEX: Automatic mapping of perturbed and unperturbed regions of proteins and complexes. BMC Bioinformatics, 2010, 11, 51.	1.2	24
180	A Membrane Protein Complex Docking Benchmark. Journal of Molecular Biology, 2018, 430, 5246-5256.	2.0	24

#	Article	IF	CITATIONS
181	Information-Driven Modeling of Protein-Peptide Complexes. Methods in Molecular Biology, 2015, 1268, 221-239.	0.4	24
182	Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, .	6.0	24
183	Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC'). Journal of Biomolecular NMR, 2001, 21, 221-233.	1.6	23
184	Solvated protein–DNA docking using HADDOCK. Journal of Biomolecular NMR, 2013, 56, 51-63.	1.6	23
185	Binding Hotspots of BAZ2B Bromodomain: Histone Interaction Revealed by Solution NMR Driven Docking. Biochemistry, 2014, 53, 6706-6716.	1.2	23
186	Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3. Journal of Computer-Aided Molecular Design, 2019, 33, 83-91.	1.3	23
187	Coarse-grained (hybrid) integrative modeling of biomolecular interactions. Computational and Structural Biotechnology Journal, 2020, 18, 1182-1190.	1.9	23
188	Non-interacting surface solvation and dynamics in protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2015, 83, 445-458.	1.5	22
189	Intramolecular surface contacts contain information about protein–protein interface regions. Bioinformatics, 2006, 22, 2094-2098.	1.8	21
190	A comprehensive framework of E2–RING E3 interactions of the human ubiquitin–proteasome system. Molecular Systems Biology, 2009, 5, .	3.2	21
191	Native or Non-Native Protein–Protein Docking Models? Molecular Dynamics to the Rescue. Journal of Chemical Theory and Computation, 2021, 17, 5944-5954.	2.3	21
192	Structure refinement of the glucocorticoid receptor-DNA binding domain from NMR data by relaxation matrix calculations. Journal of Molecular Biology, 1995, 247, 689-700.	2.0	20
193	The C Terminus of Apocytochrome b562 Undergoes Fast Motions and Slow Exchange among Ordered Conformations Resembling the Folded State. Biochemistry, 2002, 41, 5505-5514.	1.2	20
194	NMR and molecular dynamics studies of an autoimmune myelin basic protein peptide and its antagonist. FEBS Journal, 2004, 271, 3399-3413.	0.2	20
195	Quantitative use of chemical shifts for the modeling of protein complexes. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2662-2670.	1.5	20
196	Explicit Treatment of Water Molecules in Data-Driven Protein–Protein Docking: The Solvated HADDOCKing Approach. Methods in Molecular Biology, 2012, 819, 355-374.	0.4	20
197	Molecular Dynamics Studies of a Molecular Switch in the Glucocorticoid Receptor. Journal of Molecular Biology, 2003, 328, 325-334.	2.0	19
198	The eNMR platform for structural biology. Journal of Structural and Functional Genomics, 2010, 11, 1-8.	1.2	18

#	Article	IF	CITATIONS
199	Dynamic Control of Selectivity in the Ubiquitination Pathway Revealed by an ASP to GLU Substitution in an Intra-Molecular Salt-Bridge Network. PLoS Computational Biology, 2012, 8, e1002754.	1.5	18
200	Unveiling the Interaction of Vanadium Compounds with Human Serum Albumin by Using1H STD NMR and Computational Docking Studies. European Journal of Inorganic Chemistry, 2013, 2013, 4619-4627.	1.0	18
201	Structure-Function Relationships of Antimicrobial Peptides and Proteins with Respect to Contact Molecules on Pathogen Surfaces. Current Topics in Medicinal Chemistry, 2015, 16, 89-98.	1.0	18
202	Defining distance restraints in HADDOCK. Nature Protocols, 2018, 13, 1503-1503.	5.5	18
203	Describing Partially Unfolded States of Proteins from Sparse NMR Ddata. Journal of Biomolecular NMR, 2005, 33, 175-186.	1.6	17
204	Supramolecular Structure of Membrane-Associated Polypeptides by Combining Solid-State NMR and Molecular Dynamics Simulations. Biophysical Journal, 2012, 103, 29-37.	0.2	17
205	New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies. Journal of Biological Chemistry, 2016, 291, 15057-15068.	1.6	17
206	Template-based protein–protein docking exploiting pairwise interfacial residue restraints. Briefings in Bioinformatics, 2017, 18, bbw027.	3.2	17
207	Structural and Biochemical Characterization of NarE, an Iron-containing ADP-ribosyltransferase from Neisseria meningitidis. Journal of Biological Chemistry, 2011, 286, 14842-14851.	1.6	16
208	Folding Then Binding vs Folding Through Binding in Macrocyclic Peptide Inhibitors of Human Pancreatic α-Amylase. ACS Chemical Biology, 2019, 14, 1751-1759.	1.6	16
209	Changes in Dynamical Behavior of the Retinoid X Receptor DNA-Binding Domain upon Binding to a 14 Base-Pair DNA Half Siteâ€. Biochemistry, 2000, 39, 8747-8757.	1.2	15
210	Direct Use of Unassigned Resonances in NMR Structure Calculations with Proxy Residues. Journal of the American Chemical Society, 2006, 128, 7566-7571.	6.6	15
211	Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF. Nature Communications, 2016, 7, 13228.	5.8	15
212	Combination of Ambiguous and Unambiguous Data in the Restraint-driven Docking of Flexible Peptides with HADDOCK: The Binding of the Spider Toxin PcTx1 to the Acid Sensing Ion Channel (ASIC) 1a. Journal of Chemical Information and Modeling, 2016, 56, 127-138.	2.5	15
213	Biological vs. Crystallographic Protein Interfaces: An Overview of Computational Approaches for Their Classification. Crystals, 2020, 10, 114.	1.0	15
214	<scp>PDBâ€ŧools</scp> web: A userâ€friendly interface for the manipulation of <scp>PDB</scp> files. Proteins: Structure, Function and Bioinformatics, 2021, 89, 330-335.	1.5	15
215	Insight into Molecular Interactions Between Two PB1 Domains. Journal of Molecular Biology, 2004, 336, 1195-1210.	2.0	14
216	Altered Specificity in DNA Binding by the lac Repressor: A Mutant lac Headpiece that Mimics the gal Repressor. ChemBioChem, 2005, 6, 1628-1637.	1.3	14

#	Article	IF	CITATIONS
217	Comparative NMR study on the impact of point mutations on protein stability ofPseudomonas mendocinalipase. Protein Science, 2006, 15, 1915-1927.	3.1	14
218	Integrating quantitative proteomics with accurate genome profiling of transcription factors by greenCUT&RUN. Nucleic Acids Research, 2021, 49, e49.	6.5	14
219	MINOES: A new approach to select a representative ensemble of structures in NMR studies of (partially) unfolded states. Application to Δ25â€PYP. Proteins: Structure, Function and Bioinformatics, 2009, 74, 895-904.	1.5	13
220	Information-Driven Structural Modelling of Protein–Protein Interactions. Methods in Molecular Biology, 2015, 1215, 399-424.	0.4	13
221	Evolution Rescues Folding of Human Immunodeficiency Virus-1 Envelope Glycoprotein GP120 Lacking a Conserved Disulfide Bond. Molecular Biology of the Cell, 2008, 19, 4707-4716.	0.9	12
222	Natural helix 9 mutants of PPARÎ ³ differently affect its transcriptional activity. Molecular Metabolism, 2019, 20, 115-127.	3.0	12
223	50 years of PDB: a catalyst in structural biology. Nature Methods, 2021, 18, 448-449.	9.0	12
224	A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo) Tj ETQq0 0 0 rgBT	Overlock 1	10 Tf 50 462
225	Cyclization and Docking Protocol for Cyclic Peptide–Protein Modeling Using HADDOCK2.4. Journal of Chemical Theory and Computation, 2022, 18, 4027-4040.	2.3	12
226	MTMDAT-HADDOCK: High-throughput, protein complex structure modeling based on limited proteolysis and mass spectrometry. BMC Structural Biology, 2012, 12, 29.	2.3	11
227	Novel Insights into Guide RNA 5′-Nucleoside/Tide Binding by Human Argonaute 2. International Journal of Molecular Sciences, 2016, 17, 22.	1.8	11
228	Prediction of Biomolecular Complexes. , 2017, , 265-292.		11
229	Mapping the Contact Sites of the Escherichia coli Division-Initiating Proteins FtsZ and ZapA by BAMG Cross-Linking and Site-Directed Mutagenesis. International Journal of Molecular Sciences, 2018, 19, 2928.	1.8	11
230	Coupling enhanced sampling of the apo-receptor with template-based ligand conformers selection: performance in pose prediction in the D3R Grand Challenge 4. Journal of Computer-Aided Molecular Design, 2020, 34, 149-162.	1.3	11
231	An overview of dataâ€driven HADDOCK strategies in CAPRI rounds 38â€45. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1029-1036.	1.5	11
232	Shape-Restrained Modeling of Protein–Small-Molecule Complexes with High Ambiguity Driven DOCKing. Journal of Chemical Information and Modeling, 2021, 61, 4807-4818.	2.5	11
233	Information-driven modeling of biomolecular complexes. Current Opinion in Structural Biology, 2021, 70, 70-77.	2.6	11
234	Direct nuclear Overhauser effect refinement of crambin from two-dimensional nmr data using a slow-cooling annealing protocol. Biopolymers, 1994, 34, 39-50.	1.2	10

#	Article	IF	CITATIONS
235	Defining the limits and reliability of rigid-body fitting in cryo-EM maps using multi-scale image pyramids. Journal of Structural Biology, 2016, 195, 252-258.	1.3	10
236	The structural details of the interaction of singleâ€stranded DNA binding protein hSSB2 (NABP1/OBFC2A) with UVâ€damaged DNA. Proteins: Structure, Function and Bioinformatics, 2020, 88, 319-326.	1.5	10
237	Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR. Journal of Biomolecular NMR, 2015, 62, 497-502.	1.6	9
238	Molecular dynamics characterization of the conformational landscape of small peptides: A series of handsâ€on collaborative practical sessions for undergraduate students. Biochemistry and Molecular Biology Education, 2016, 44, 160-167.	0.5	9
239	Prevention of VÎ ³ 9VÎ ² T Cell Activation by a VÎ ³ 9VÎ ² TCR Nanobody. Journal of Immunology, 2017, 198, 308-317.	0.4	9
240	Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy. Magnetic Resonance, 2021, 2, 187-202.	0.8	9
241	Direct structure refinement using 3D NOE-NOE spectra of biomolecules. Journal of Magnetic Resonance, 1991, 95, 626-631.	0.5	8
242	Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis. Frontiers in Genetics, 2015, 6, 197.	1.1	8
243	Editorial: Multiscale Modeling From Macromolecules to Cell: Opportunities and Challenges of Biomolecular Simulations. Frontiers in Molecular Biosciences, 2020, 7, 194.	1.6	8
244	Adhesion/Growth-Regulatory Galectins: Insights into Their Ligand Selectivity Using Natural Glycoproteins and Glycotopes. Advances in Experimental Medicine and Biology, 2011, 705, 117-141.	0.8	8
245	Deciphering the role of the electrostatic interactions in the αâ€tropomyosin headâ€toâ€tail complex. Proteins: Structure, Function and Bioinformatics, 2008, 73, 902-917.	1.5	7
246	The solution structure of the kallikrein-related peptidases inhibitor SPINK6. Biochemical and Biophysical Research Communications, 2016, 471, 103-108.	1.0	7
247	Control over the fibrillization yield by varying the oligomeric nucleation propensities of self-assembling peptides. Communications Chemistry, 2020, 3, .	2.0	7
248	Data-driven Docking: Using External Information to Spark the Biomolecular Rendez-vous. , 2010, , 182-208.		6
249	SQUEEZE-E: The Optimal Solution for Molecular Simulations with Periodic Boundary Conditions. Journal of Chemical Theory and Computation, 2012, 8, 3618-3627.	2.3	6
250	In support of the BMRB. Nature Structural and Molecular Biology, 2012, 19, 854-860.	3.6	6
251	Protein–protein interactions. Current Opinion in Structural Biology, 2013, 23, 859-861.	2.6	6
252	Understanding Docking Complexes of Macromolecules Using HADDOCK: The Synergy between Experimental Data and Computations. Bio-protocol, 2020, 10, e3793.	0.2	6

#	Article	IF	CITATIONS
253	Insights into the DNA cleavage mechanism of human LINEâ€₁ retrotransposon endonuclease. Proteins: Structure, Function and Bioinformatics, 2009, 74, 917-928.	1.5	5
254	NMR resonance assignments of NarE, a putative ADP-ribosylating toxin from Neisseria meningitidis. Biomolecular NMR Assignments, 2011, 5, 35-38.	0.4	5
255	NMR-Based Modeling and Refinement of Protein 3D Structures. Methods in Molecular Biology, 2015, 1215, 351-380.	0.4	5
256	iScore: An MPI supported software for ranking protein–protein docking models based on a random walk graph kernel and support vector machines. SoftwareX, 2020, 11, 100462.	1.2	5
257	Interface refinement of low- to medium-resolution Cryo-EM complexes using HADDOCK2.4. Structure, 2022, 30, 476-484.e3.	1.6	5
258	NMR Studies of the Human Retinoic Acid Receptor-? DNA-Binding Domain Annals of the New York Academy of Sciences, 1993, 684, 49-62.	1.8	4
259	1H, 13C and 15N assignment of the GNA1946 outer membrane lipoprotein from Neisseria meningitidis. Biomolecular NMR Assignments, 2011, 5, 135-138.	0.4	4
260	Effects of strong coupling in multiple-quantum-filtered two-dimensional NOE spectroscopy. Journal of Magnetic Resonance, 1990, 86, 652-656.	0.5	3
261	Protein–Protein Modeling Using Cryo-EM Restraints. Methods in Molecular Biology, 2020, 2112, 145-162.	0.4	3
262	Rapid Prediction of Multi-dimensional NMR Data Sets Using FANDAS. Methods in Molecular Biology, 2018, 1688, 111-132.	0.4	3
263	Cover Image, Volume 86, Issue S1. Proteins: Structure, Function and Bioinformatics, 2018, 86, C1.	1.5	2
264	West-Life: A Virtual Research Environment for structural biology. Journal of Structural Biology: X, 2019, 1, 100006.	0.7	2
265	MENSAdb: a thorough structural analysis of membrane protein dimers. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	2
266	Nuclear Magnetic Resonance-Based Modeling and Refinement of Protein Three-Dimensional Structures and Their Complexes. Methods in Molecular Biology, 2008, 443, 229-255.	0.4	2
267	Biomolecular Structure and Dynamics: Recent Experimental and Theoretical Advances. , 1997, , 189-209.		2
268	Using machineâ€learningâ€driven approaches to boost hotâ€spot's knowledge. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	2
269	Supramolekulare Organisation und funktionale Auswirkungen von Ballungen von K ⁺ â€KanĀæn in Membranen. Angewandte Chemie, 2017, 129, 13404-13409.	1.6	1

#	Article	IF	CITATIONS
271	Predicting and dissecting high-order molecular complexity by information-driven biomolecular docking , 2012, , 232-246.		1
272	Information-Driven Modelling of Antibody-Antigen Complexes. SSRN Electronic Journal, 0, , .	0.4	1
273	A click-flipped enzyme substrate boosts the performance of the diagnostic screening for Hunter syndrome. Chemical Science, 2020, 11, 12671-12676.	3.7	1
274	Molecular Insights Into Binding and Activation of the Human KCNQ2 Channel by Retigabine. Frontiers in Molecular Biosciences, 2022, 9, 839249.	1.6	1
275	Characterization and Structural Analyses of Nonspecific Lipid Transfer Protein 1 from Mung Bean. Biochemistry, 2005, 44, 11646-11646.	1.2	0
276	Editorial overview: Protein–protein interactions. Current Opinion in Structural Biology, 2015, 35, vii-ix.	2.6	0
277	On the Combination of Restraint-Driven Docking of Flexible Peptides to Ion Channels - Lessons Learnt from the Complex Formed by the Spider Venom PcTx1 and the Acid Sensing Ion Channel1. Biophysical Journal, 2016, 110, 536a.	0.2	0
278	Frontispiece: Supramolecular Organization and Functional Implications of K ⁺ â€Channel Clusters in Membranes. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0
279	Frontispiz: Supramolekulare Organisation und funktionale Auswirkungen von Ballungen von K ⁺ â€KanĀæn in Membranen. Angewandte Chemie, 2017, 129, .	1.6	0
280	EDES: A Protocol to Generate Holo-Like and Druggable Protein Conformations Starting from the APO Structure. Biophysical Journal, 2020, 118, 44a.	0.2	0
281	Rational design of a subtype-specific peptide vaccine against Neisseria meningitis. , 2002, , 702-703.		0