
John S Hartung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11338927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods, 2006, 66, 104-115.	1.6	729
2	Specific PCR detection and identification of Xylella fastidiosa strains causing citrus variegated chlorosis. Current Microbiology, 1995, 31, 377-381.	2.2	161
3	Quantitative Distribution of â€~ <i>Candidatus</i> Liberibacter asiaticus' in Citrus Plants with Citrus Huanglongbing. Phytopathology, 2009, 99, 139-144.	2.2	155
4	Citrus Variegated Chlorosis Bacterium: Axenic Culture, Pathogenicity, and Serological Relationships with Other Strains ofXylella fastidiosa. Phytopathology, 1994, 84, 591.	2.2	122
5	Role Bending: Complex Relationships Between Viruses, Hosts, and Vectors Related to Citrus Leprosis, an Emerging Disease. Phytopathology, 2015, 105, 1013-1025.	2.2	96
6	Optimized Quantification of Unculturable <i>Candidatus</i> Liberibacter Spp. in Host Plants Using Real-Time PCR. Plant Disease, 2008, 92, 854-861.	1.4	88
7	Genetic relationships among strains of Xylella fastidiosa from RAPD-PCR data. Current Microbiology, 1995, 31, 134-137.	2.2	73
8	Evaluation of DNA Amplification Methods for Improved Detection of "Candidatus Liberibacter Species― Associated with Citrus Huanglongbing. Plant Disease, 2007, 91, 51-58.	1.4	69
9	Cloning and sequence analysis of an infectious clone of Citrus yellow mosaic virus that can infect sweet orange via Agrobacterium-mediated inoculation. Journal of General Virology, 2001, 82, 2549-2558.	2.9	62
10	Optimized Quantification of Unculturable Candidatus Liberibacter Spp. in Host Plants Using Real-Time PCR. Plant Disease, 2008, 92, 854-861.	1.4	58
11	Transcriptome analysis of sweet orange trees infected with â€~Candidatus Liberibacter asiaticus' and two strains of Citrus Tristeza Virus. BMC Genomics, 2016, 17, 349.	2.8	53
12	Genomic Fingerprints ofXanthomonas campestrispv.citriStrains from Asia, South America, and Florida. Phytopathology, 1987, 77, 282.	2.2	49
13	An Evaluation of the Genetic Diversity of Xylella fastidiosa Isolated from Diseased Citrus and Coffee in São Paulo, Brazil. Phytopathology, 2001, 91, 599-605.	2.2	48
14	Colonization of Dodder, <i>Cuscuta indecora</i> , by â€~ <i>Candidatus</i> Liberibacter asiaticus' and â€~ <i>Ca.</i> L. americanus'. Phytopathology, 2010, 100, 756-762.	2.2	47
15	Development and systematic validation of qPCR assays for rapid and reliable differentiation of Xylella fastidiosa strains causing citrus variegated chlorosis. Journal of Microbiological Methods, 2013, 92, 79-89.	1.6	46
16	Genetic diversity of citrus bacterial canker pathogens preserved in herbarium specimens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18427-18432.	7.1	45
17	Strains of Xylella fastidiosa Rapidly Distinguished by Arbitrarily Primed-PCR. Current Microbiology, 2000, 40, 279-282.	2.2	41
18	Comparison of the â€~Ca. Liberibacter asiaticus' Genome Adapted for an Intracellular Lifestyle with Other Members of the Rhizobiales, PLoS ONF, 2011, 6, e23289	2.5	40

JOHN S HARTUNG

#	Article	IF	CITATIONS
19	History and Diversity of <i>Citrus leprosis virus</i> Recorded in Herbarium Specimens. Phytopathology, 2015, 105, 1277-1284.	2.2	37
20	Localization and Distribution of 'Candidatus Liberibacter asiaticus' in Citrus and Periwinkle by Direct Tissue Blot Immuno Assay with an Anti-OmpA Polyclonal Antibody. PLoS ONE, 2015, 10, e0123939.	2.5	37
21	Evidence for proliferation of <i>Enterobacter cloacae</i> on carbohydrates in cucumber and pea spermosphere. Canadian Journal of Microbiology, 1992, 38, 1128-1134.	1.7	30
22	Lack of Evidence for Transmission of <i>â€~Candidatus</i> Liberibacter asiaticus' Through Citrus Seed Taken from Affected Fruit. Plant Disease, 2010, 94, 1200-1205.	1.4	30
23	Isolation and molecular characterization of Xylella fastidiosa from coffee plants in Costa Rica. Journal of Microbiology, 2008, 46, 482-490.	2.8	29
24	Construction of a Shuttle Vector and Transformation of Xylella fastidiosa with Plasmid DNA. Current Microbiology, 2001, 43, 158-162.	2.2	27
25	Genetic Diversity of <i>Xylella fastidiosa</i> Strains from Costa Rica, São Paulo, Brazil, and United States. Phytopathology, 2007, 97, 1338-1347.	2.2	25
26	An Evolutionary Perspective of Pierce's Disease of Grapevine, Citrus Variegated Chlorosis, and Mulberry Leaf Scorch Diseases. Current Microbiology, 2002, 45, 423-428.	2.2	23
27	Amplification of DNA of Xanthomonas axonopodis pv. citri from historic citrus canker herbarium specimens. Journal of Microbiological Methods, 2006, 65, 237-246.	1.6	16
28	Sequence analysis of a 1296-nucleotide plasmid from Xylella fastidiosa. FEMS Microbiology Letters, 2006, 155, 217-222.	1.8	16
29	Immune Tissue Print and Immune Capture-PCR for Diagnosis and Detection of Candidatus Liberibacter Asiaticus. Scientific Reports, 2017, 7, 46467.	3.3	16
30	Serological detection of †Candidatus Liberibacter asiaticus' in citrus, and identification by GeLC-MS/MS of a chaperone protein responding to cellular pathogens. Scientific Reports, 2016, 6, 29272.	3.3	13
31	Association ofXylella fastidiosawith leaf scorch in Japanese beech bonsai. Canadian Journal of Plant Pathology, 2003, 25, 401-405.	1.4	12
32	Conservation of Gene Order and Content in the Circular Chromosomes of â€~Candidatus Liberibacter asiaticus' and Other Rhizobiales. PLoS ONE, 2012, 7, e34673.	2.5	9
33	Characterization and purification of proteins suitable for the production of antibodies against â€~ Ca . Liberibacter asiaticus'. Protein Expression and Purification, 2017, 139, 36-42.	1.3	7
34	Limited infection by â€~Candidatus Liberibacter asiaticus' in â€~Valencia' sweet orange trees in the preser of Citrus tristeza virus. Journal of Integrative Agriculture, 2019, 18, 2284-2293.	1Ce 3.5	6
35	â€ ⁻ Ca. Liberibacter asiaticus' Proteins Orthologous with pSymA-Encoded Proteins of Sinorhizobium meliloti: Hypothetical Roles in Plant Host Interaction. PLoS ONE, 2012, 7, e38725.	2.5	6
36	Enhanced Serologically Based Detection of Liberibacters Associated with Citrus Huanglongbing. Plant Disease, 2020, 104, 1584-1588.	1.4	5

#	Article	IF	CITATIONS
37	Expression of Green Fluorescent Protein in Xylella fastidiosa Is Affected by Passage Through Host Plants. Current Microbiology, 2004, 49, 215-20.	2.2	1

Pierce's Disease and Others Caused by<i>Xylella fastidiosa</i>., 2004, , 928-930.

0