Charles P Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11337022/publications.pdf

Version: 2024-02-01

147801 315739 5,821 39 31 38 citations h-index g-index papers 40 40 40 3919 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Research, 1998, 29, 233-249.	1.6	742
2	Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Annals of Neurology, 1996, 39, 147-157.	5.3	658
3	Pharmacology and mechanism of action of pregabalin: The calcium channel α2–δ (alpha2–delta) subunit as a target for antiepileptic drug discovery. Epilepsy Research, 2007, 73, 137-150.	1.6	492
4	Ca2+ channel α2δ ligands: novel modulators of neurotransmission. Trends in Pharmacological Sciences, 2007, 28, 75-82.	8.7	395
5	Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain, 2003, 105, 133-141.	4.2	290
6	The diverse therapeutic actions of pregabalin: is a single mechanism responsible for several pharmacological activities?. Trends in Pharmacological Sciences, 2013, 34, 332-339.	8.7	251
7	Na+ channels as targets for neuroprotective drugs. Trends in Pharmacological Sciences, 1995, 16, 309-316.	8.7	233
8	Mechanisms of analgesia by gabapentin and pregabalin – Calcium channel α2-δ [Cavα2-δ] ligands. Pain, 2009, 142, 13-16.	4.2	217
9	Structureâ^'Activity Relationships of Pregabalin and Analogues That Target the α2-Î^Protein. Journal of Medicinal Chemistry, 2005, 48, 2294-2307.	6.4	197
10	Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neuroscience Letters, 1991, 128, 150-154.	2.1	182
11	Na+ currents that fail to inactivate. Trends in Neurosciences, 1993, 16, 455-460.	8.6	157
12	Rodent Model of Chronic Central Pain After Spinal Cord Contusion Injury and Effects of Gabapentin. Journal of Neurotrauma, 2000, 17, 1205-1217.	3.4	151
13	Effects of anticonvulsant drug gabapentin on the enzymes in metabolic pathways of glutamate and GABA. Epilepsy Research, 1995, 22, 1-11.	1.6	147
14	Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: An ex vivo autoradiographic study in alpha2-delta type 1 genetically modified mice. Brain Research, 2006, 1075 , $68-80$.	2.2	142
15	Potent and stereospecific anticonvulsant activity of 3-isobutyl GABA relates to in vitro binding at a novel site labeled by tritiated gabapentin. Epilepsy Research, 1993, 14, 11-15.	1.6	133
16	Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Research, 1993, 16, 175-181.	1.6	117
17	Pregabalin is a potent and selective ligand for $\hat{l}\pm2\hat{l}-1$ and $\hat{l}\pm2\hat{l}-2$ calcium channel subunits. European Journal of Pharmacology, 2011, 667, 80-90.	3.5	116
18	Damage from oxygen and glucose deprivation in hippocampal slices is prevented by tetrodotoxin, lidocaine and phenytoin without blockade of action potentials. Brain Research, 1994, 664, 167-177.	2.2	105

#	Article	IF	CITATIONS
19	Hippocampal slices: glutamate overflow and cellular damage from ischemia are reduced by sodium-channel blockade. Journal of Neuroscience Methods, 1995, 59, 121-128.	2.5	97
20	Pregabalin Reduces the Release of Synaptic Vesicles from Cultured Hippocampal Neurons. Molecular Pharmacology, 2006, 70, 467-476.	2.3	96
21	3-Alkyl-4-aminobutyric acids: the first class of anticonvulsant agents that activates L-glutamic acid decarboxylase. Journal of Medicinal Chemistry, 1991, 34, 2295-2298.	6.4	95
22	3-Alkyl GABA and 3-alkylglutamic acid analogues: two new classes of anticonvulsant agents. Epilepsy Research, 1992, 11, 103-110.	1.6	91
23	Enantioselective synthesis of PD144723: a potent stereospecific anticonvulsant Bioorganic and Medicinal Chemistry Letters, 1994, 4, 823-826.	2.2	82
24	Activity profile of pregabalin in rodent models of epilepsy and ataxia. Epilepsy Research, 2006, 68, 189-205.	1.6	77
25	Central Sensitization and $CaV\hat{l}\pm2\hat{l}$ Ligands in Chronic Pain Syndromes: Pathologic Processes and Pharmacologic Effect. Journal of Pain, 2010, 11, 1241-1249.	1.4	73
26	Pregabalin action at a model synapse: Binding to presynaptic calcium channel α2-δÂsubunit reduces neurotransmission in mice. European Journal of Pharmacology, 2006, 553, 82-88.	3.5	59
27	Sodium Channels and Therapy of Central Nervous System Diseases. Advances in Pharmacology, 1997, , 47-98.	2.0	55
28	Anxiolytic-Like Activity of Pregabalin in the Vogel Conflict Test in \hat{l}_{\pm} ₂ \hat{l}' -1 (R217A) and \hat{l}_{\pm} ₂ \hat{l}' -2 (R279A) Mouse Mutants. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 615-621.	2.5	50
29	Novel Cyclopropyl β-Amino Acid Analogues of Pregabalin and Gabapentin That Target the α ₂ -δ Protein. Journal of Medicinal Chemistry, 2005, 48, 3026-3035.	6.4	43
30	Anxiolytic profile of pregabalin on elicited hippocampal theta oscillation. Neuropharmacology, 2009, 56, 379-385.	4.1	39
31	Analgesia with Gabapentin and Pregabalin May Involve <i>N</i> Methyl-d-Aspartate Receptors, Neurexins, and Thrombospondins. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 161-174.	2.5	32
32	Phenytoin pretreatment prevents hypoxic-ischemic brain damage in neonatal rats. Developmental Brain Research, 1996, 95, 169-175.	1.7	30
33	Carboxylate bioisosteres of gabapentin. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2333-2336.	2.2	22
34	The effects of gabapentin in the rat hippocampus are mimicked by two structural analogs, but not by nimodipine. Epilepsy Research, 2000, 41, 155-162.	1.6	17
35	Ralitoline (CI-946) and CI-953 block sustained repetitive sodium action potentials in cultured mouse spinal cord neurons and displace batrachotoxinin A 20- \hat{l} ±-benzoate binding in vitro. Epilepsy Research, 1991, 8, 197-203.	1.6	16
36	Oxadiazolone bioisosteres of pregabalin and gabapentin. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 247-250.	2,2	15

CHARLES P TAYLOR

#	Article	IF	CITATIONS
37	Reply to: How does gabapentin relieve pain? (Marshall Devor). Pain, 2009, 145, 259-261.	4.2	3
38	Antiepileptic drugs for treatment of neuropathic pain., 2002,, 211-232.		2
39	Phenytoin and Fosphenytoin., 1997,, 253-256.		O