Nicholas J Davis-Poynter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1133641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. Journal of Virology, 1992, 66, 341-348.	3.4	411
2	Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature, 1997, 386, 510-514.	27.8	290
3	Analysis of Equid Herpesvirus 1 Strain Variation Reveals a Point Mutation of the DNA Polymerase Strongly Associated with Neuropathogenic versus Nonneuropathogenic Disease Outbreaks. Journal of Virology, 2006, 80, 4047-4060.	3.4	244
4	Equine Herpesvirusâ€1 Consensus Statement. Journal of Veterinary Internal Medicine, 2009, 23, 450-461.	1.6	241
5	Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. Journal of Virology, 1997, 71, 1521-1529.	3.4	206
6	A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathogens, 2007, 3, e160.	4.7	176
7	The Murine Cytomegalovirus Chemokine Homolog, m131/129, Is a Determinant of Viral Pathogenicity. Journal of Virology, 1999, 73, 6800-6809.	3.4	123
8	Analysis of the contributions of herpes simplex virus type 1 membrane proteins to the induction of cell-cell fusion. Journal of Virology, 1994, 68, 7586-7590.	3.4	114
9	Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO Journal, 2003, 22, 833-846.	7.8	111
10	Sequence Variation of the SeM Gene of Streptococcus equi Allows Discrimination of the Source of Strangles Outbreaks. Journal of Clinical Microbiology, 2006, 44, 480-486.	3.9	95
11	Distinct Brainstem and Forebrain Circuits Receiving Tracheal Sensory Neuron Inputs Revealed Using a Novel Conditional Anterograde Transsynaptic Viral Tracing System. Journal of Neuroscience, 2015, 35, 7041-7055.	3.6	94
12	Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129. Neuroscience, 2012, 207, 148-166.	2.3	77
13	Mutations in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain. Journal of Virology, 1994, 68, 6985-6993.	3.4	77
14	M144, a Murine Cytomegalovirus (Mcmv)-Encoded Major Histocompatibility Complex Class I Homologue, Confers Tumor Resistance to Natural Killer Cell–Mediated Rejection. Journal of Experimental Medicine, 1999, 190, 435-444.	8.5	74
15	Evidence for multiple sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in rodents. Brain Structure and Function, 2015, 220, 3683-3699.	2.3	66
16	Anterograde neuronal circuit tracing using a genetically modified herpes simplex virus expressing EGFP. Journal of Neuroscience Methods, 2012, 209, 158-167.	2.5	62
17	Murine Cytomegalovirus Exploits Olfaction To Enter New Hosts. MBio, 2016, 7, e00251-16.	4.1	62
18	Masters of deception: A review of herpesvirus immune evasion strategies. Immunology and Cell Biology, 1996, 74, 513-522.	2.3	61

#	Article	IF	CITATIONS
19	Lymph Node Macrophages Restrict Murine Cytomegalovirus Dissemination. Journal of Virology, 2015, 89, 7147-7158.	3.4	61
20	The M33 Chemokine Receptor Homolog of Murine Cytomegalovirus Exhibits a Differential Tissue-Specific Role during In Vivo Replication and Latency. Journal of Virology, 2009, 83, 7590-7601.	3.4	57
21	Mutation of the Maturase Lipoprotein Attenuates the Virulence of Streptococcus equi to a Greater Extent than Does Loss of General Lipoprotein Lipidation. Infection and Immunity, 2006, 74, 6907-6919.	2.2	55
22	A novel streptococcal integrative conjugative element involved in iron acquisition. Molecular Microbiology, 2008, 70, 1274-1292.	2.5	55
23	Murine Cytomegalovirus Spreads by Dendritic Cell Recirculation. MBio, 2017, 8, .	4.1	52
24	Evidence supporting the inclusion of strains from each of the two co-circulating lineages of H3N8 equine influenza virus in vaccines. Vaccine, 2004, 22, 4101-4109.	3.8	50
25	Functional Analysis of the Murine Cytomegalovirus Chemokine Receptor Homologue M33: Ablation of Constitutive Signaling Is Associated with an Attenuated Phenotype In Vivo. Journal of Virology, 2008, 82, 1884-1898.	3.4	49
26	Inhibition of NK Cells by Murine CMV-Encoded Class I MHC Homologue m144. Cellular Immunology, 1999, 191, 145-151.	3.0	42
27	Cytomegalovirus evasion of natural killer cell responses. Immunological Reviews, 1999, 168, 187-197.	6.0	41
28	Partial Functional Complementation between Human and Mouse Cytomegalovirus Chemokine Receptor Homologues. Journal of Virology, 2011, 85, 6091-6095.	3.4	40
29	GAG mimetic functionalised solid and mesoporous silica nanoparticles as viral entry inhibitors of herpes simplex type 1 and type 2 viruses. Nanoscale, 2016, 8, 16192-16196.	5.6	40
30	Comparison of hamster and pony challenge models for evaluation of effect of antigenic drift on cross protection afforded by equine influenza vaccines. Equine Veterinary Journal, 2010, 35, 458-462.	1.7	38
31	Induction of Antibody Responses to African Horse Sickness Virus (AHSV) in Ponies after Vaccination with Recombinant Modified Vaccinia Ankara (MVA). PLoS ONE, 2009, 4, e5997.	2.5	37
32	Equine herpesvirus-1 abortion: atypical cases with lesions largely or wholly restricted to the placenta. Equine Veterinary Journal, 2010, 36, 79-82.	1.7	37
33	Development and evaluation of ELISA procedures to detect antibodies against the major envelope protein (GL) of equine arteritis virus. Journal of Virological Methods, 2000, 90, 167-183.	2.1	35
34	In vitro characterisation of high and low virulence isolates of equine herpesvirus-1 and -4. Research in Veterinary Science, 2003, 75, 83-86.	1.9	33
35	From sabotage to camouflage: viral evasion of cytotoxic T lymphocyte and natural killer cell-mediated immunity. Seminars in Cell and Developmental Biology, 1998, 9, 369-378.	5.0	30
36	Generation of a Candidate Live Marker Vaccine for Equine Arteritis Virus by Deletion of the Major Virus Neutralization Domain. Journal of Virology, 2003, 77, 8470-8480.	3.4	30

NICHOLAS J DAVIS-POYNTER

#	Article	IF	CITATIONS
37	Alveolar Macrophages Are a Prominent but Nonessential Target for Murine Cytomegalovirus Infecting the Lungs. Journal of Virology, 2016, 90, 2756-2766.	3.4	29
38	The Equine Herpesvirus 2 E1 Open Reading Frame Encodes a Functional Chemokine Receptor. Journal of Virology, 1999, 73, 9843-9848.	3.4	29
39	Report of the equine herpesvirus-1 Havermeyer Workshop, San Gimignano, Tuscany, June 2004. Veterinary Immunology and Immunopathology, 2006, 111, 3-13.	1.2	28
40	Frequency and phenotype of EHV-1 specific, IFN-γ synthesising lymphocytes in ponies: The effects of age, pregnancy and infection. Developmental and Comparative Immunology, 2007, 31, 202-214.	2.3	28
41	Evaluation of microporous polycaprolactone matrices for controlled delivery of antiviral microbicides to the female genital tract. Journal of Materials Science: Materials in Medicine, 2013, 24, 2719-2727.	3.6	27
42	Sequence analysis of the equid herpesvirus 2 chemokine receptor homologues E1, ORF74 and E6 demonstrates high sequence divergence between field isolates. Journal of General Virology, 2007, 88, 2450-2462.	2.9	27
43	Murine cytomegalovirus degrades MHC class II to colonize the salivary glands. PLoS Pathogens, 2018, 14, e1006905.	4.7	24
44	Type 1 Interferons and NK Cells Limit Murine Cytomegalovirus Escape from the Lymph Node Subcapsular Sinus. PLoS Pathogens, 2016, 12, e1006069.	4.7	23
45	Detection of equine arteritis virus (EAV)-specific cytotoxic CD8+ T lymphocyte precursors from EAV-infected ponies. Journal of General Virology, 2003, 84, 2745-2753.	2.9	22
46	Identification of Common Mechanisms by Which Human and Mouse Cytomegalovirus Seven-Transmembrane Receptor Homologues Contribute to <i>In Vivo</i> Phenotypes in a Mouse Model. Journal of Virology, 2013, 87, 4112-4117.	3.4	21
47	Cytomegalovirus MHC class I homologues and natural killer cells: an overview. Microbes and Infection, 2000, 2, 521-532.	1.9	20
48	Evaluation of a prototype sub-unit vaccine against equine arteritis virus comprising the entire ectodomain of the virus large envelope glycoprotein (GL): induction of virus-neutralizing antibody and assessment of protection in ponies. Journal of General Virology, 2001, 82, 2425-2435.	2.9	20
49	Structure–Activity Relationships of GAG Mimetic-Functionalized Mesoporous Silica Nanoparticles and Evaluation of Acyclovir-Loaded Antiviral Nanoparticles with Dual Mechanisms of Action. ACS Omega, 2018, 3, 1689-1699.	3.5	17
50	A molecular approach to the identification of cytotoxic T-lymphocyte epitopes within equine herpesvirus 1. Journal of General Virology, 2006, 87, 2507-2515.	2.9	16
51	Human cytomegalovirus US28 allows dendritic cell exit from lymph nodes. Journal of General Virology, 2018, 99, 1509-1514.	2.9	16
52	Analysis of the subcellular trafficking properties of murine cytomegalovirus M78, a 7 transmembrane receptor homologue. Journal of General Virology, 2009, 90, 59-68.	2.9	14
53	Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors—A Consequence of Evolutionary Pressure?. Advances in Virology, 2012, 2012, 1-15.	1.1	14
54	Murine Cytomegalovirus Homologues of Cellular Immunomodulatory Genes. Intervirology, 1999, 42, 331-341.	2.8	11

#	Article	IF	CITATIONS
55	Human and Murine Cytomegalovirus Evasion of Cytotoxic T Lymphocyte and Natural Killer Cell-Mediated Immune Responses. Seminars in Virology, 1998, 8, 369-376.	3.9	10
56	Utilisation of bacteriophage display libraries to identify peptide sequences recognised by Equine herpesvirus type 1 specific equine sera. Journal of Virological Methods, 2000, 88, 89-104.	2.1	10
57	Virus-Encoded 7 Transmembrane Receptors. Progress in Molecular Biology and Translational Science, 2015, 129, 353-393.	1.7	10
58	Murine Cytomegalovirus Glycoprotein O Promotes Epithelial Cell Infection <i>In Vivo</i> . Journal of Virology, 2019, 93, .	3.4	10
59	Investigation and management of an outbreak of abortion related to equine herpesvirus type 1Âin unvaccinated ponies. Veterinary Record, 2007, 160, 378-380.	0.3	9
60	Luciferase-tagged wild-type and tropism-deficient mouse cytomegaloviruses reveal early dynamics of host colonization following peripheral challenge. Journal of General Virology, 2016, 97, 3379-3391.	2.9	9
61	Use of polarised equine endothelial cell cultures and an in vitro thrombosis model for potential characterisation of EHV-1 strain variation. Veterinary Microbiology, 2006, 113, 243-249.	1.9	7
62	Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 406-414.	4.3	7
63	Analysis of ORFs 2b, 3, 4, and partial ORF5 of sequential isolates of equine arteritis virus shows genetic variation following experimental infection of horses. Veterinary Microbiology, 2008, 129, 262-268.	1.9	4
64	The Cytoplasmic C-Tail of the Mouse Cytomegalovirus 7 Transmembrane Receptor Homologue, M78, Regulates Endocytosis of the Receptor and Modulates Virus Replication in Different Cell Types. PLoS ONE, 2016, 11, e0165066.	2.5	4
65	Constitutive Signaling by the Human Cytomegalovirus G Protein Coupled Receptor Homologs US28 and UL33 Enables Trophoblast Migration In Vitro. Viruses, 2022, 14, 391.	3.3	4
66	The Mouse Cytomegalovirus G Protein-Coupled Receptor Homolog, M33, Coordinates Key Features of <i>In Vivo</i> Infection via Distinct Components of Its Signaling Repertoire. Journal of Virology, 2022, 96, JVI0186721.	3.4	3
67	Introduction: Virus stealth strategies. Seminars in Cell and Developmental Biology, 1998, 9, 319.	5.0	0