Matthew W Kelley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1133491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and characterization of key long non-coding RNAs in the mouse cochlea. RNA Biology, 2021, 18, 1160-1169.	3.1	4
2	gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nature Methods, 2021, 18, 843-844.	19.0	100
3	Assessment of auditory and vestibular damage in a mouse model after single and triple blast exposures. Hearing Research, 2021, 407, 108292.	2.0	6
4	Spectrum of genes for inherited hearing loss in the Israeli Jewish population, including the novel human deafness gene <scp><i>ATOH1</i></scp> . Clinical Genetics, 2020, 98, 353-364.	2.0	15
5	YAP Mediates Hair Cell Regeneration in Balance Organs of Chickens, But LATS Kinases Suppress Its Activity in Mice. Journal of Neuroscience, 2020, 40, 3915-3932.	3.6	24
6	Characterization of the development of the mouse cochlear epithelium at the single cell level. Nature Communications, 2020, 11, 2389.	12.8	241
7	Blast-induced hearing impairment in rats is associated with structural and molecular changes of the inner ear. Scientific Reports, 2020, 10, 10652.	3.3	11
8	Single Cell Sequencing of the Pineal Gland: The Next Chapter. Frontiers in Endocrinology, 2019, 10, 590.	3.5	8
9	Helios is a key transcriptional regulator of outer hair cell maturation. Nature, 2018, 563, 696-700.	27.8	90
10	Single-cell RNA sequencing of the mammalian pineal gland identifies two pinealocyte subtypes and cell type-specific daily patterns of gene expression. PLoS ONE, 2018, 13, e0205883.	2.5	38
11	Molecular architecture underlying fluid absorption by the developing inner ear. ELife, 2017, 6, .	6.0	43
12	Role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea. PLoS Genetics, 2017, 13, e1007048.	3.5	16
13	Cell migration, intercalation, and growth regulates mammalian cochlear extension. Development (Cambridge), 2017, 144, 3766-3776.	2.5	39
14	Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea. Development (Cambridge), 2015, 142, 555-566.	2.5	63
15	Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nature Communications, 2015, 6, 8557.	12.8	247
16	Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons. ELife, 2015, 4, .	6.0	53
17	Expression of insulinâ€like growth factor binding proteins during mouse cochlear development. Developmental Dynamics, 2013, 242, 1210-1221.	1.8	16
18	Making connections in the inner ear: Recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Seminars in Cell and Developmental Biology, 2013, 24, 460-469.	5.0	71

MATTHEW W KELLEY

#	Article	IF	CITATIONS
19	The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Developmental Biology, 2013, 376, 86-98.	2.0	118
20	Molecular Mechanisms of Inner Ear Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008409-a008409.	5.5	171
21	Development of tonotopy in the auditory periphery. Hearing Research, 2011, 276, 2-15.	2.0	85
22	Insulin-Like Growth Factor Signaling Regulates the Timing of Sensory Cell Differentiation in the Mouse Cochlea. Journal of Neuroscience, 2011, 31, 18104-18118.	3.6	61
23	Regulation of cell fate and patterning in the developing mammalian cochlea. Current Opinion in Otolaryngology and Head and Neck Surgery, 2009, 17, 381-387.	1.8	30
24	Leading Wnt down a PCP Path: Cthrc1 Acts as a Coreceptor in the Wnt-PCP Pathway. Developmental Cell, 2008, 15, 7-8.	7.0	16
25	Hedgehog Signaling Regulates Sensory Cell Formation and Auditory Function in Mice and Humans. Journal of Neuroscience, 2008, 28, 7350-7358.	3.6	103
26	Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18396-18401.	7.1	313
27	Cellular commitment and differentiation in the organ of Corti. International Journal of Developmental Biology, 2007, 51, 571-583.	0.6	89
28	Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system. European Journal of Neuroscience, 2007, 25, 999-1005.	2.6	60
29	Regulation of cell fate in the sensory epithelia of the inner ear. Nature Reviews Neuroscience, 2006, 7, 837-849.	10.2	290
30	Hair cell development: Commitment through differentiation. Brain Research, 2006, 1091, 172-185.	2.2	42
31	Cell Adhesion Molecules during Inner Ear and Hair Cell Development, Including Notch and Its Ligands. Current Topics in Developmental Biology, 2003, 57, 321-356.	2.2	38
32	Analysis of Nuclear Receptor Function in the Mouse Auditory System. Methods in Enzymology, 2003, 364, 426-448.	1.0	0
33	Fibroblast Growth Factor Signaling Regulates Pillar Cell Development in the Organ of Corti. Journal of Neuroscience, 2002, 22, 9368-9377.	3.6	117
34	Determination and Commitment of Mechanosensory Hair Cells. Scientific World Journal, The, 2002, 2, 1079-1094.	2.1	8
35	Cochlear Development; New Tools and Approaches. Frontiers in Cell and Developmental Biology, 0, 10,	3.7	7