List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11334591/publications.pdf Version: 2024-02-01

		53794	62596
197	8,356	45	80
papers	citations	h-index	g-index
233	233	233	6783
all docs	docs citations	times ranked	citing authors

ΗΙΡΟΟΗΙ ΔΟΗΙΗΛΡΛ

#	Article	IF	CITATIONS
1	Plant Foods and Herbal Sources of Resveratrol. Journal of Agricultural and Food Chemistry, 2002, 50, 3337-3340.	5.2	840
2	Coffee: biochemistry and potential impact on health. Food and Function, 2014, 5, 1695-1717.	4.6	376
3	Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 2008, 69, 841-856.	2.9	328
4	Purine and pyrimidine nucleotide metabolism in higher plants. Journal of Plant Physiology, 2003, 160, 1271-1295.	3.5	283
5	Caffeine: a well known but little mentioned compound in plant science. Trends in Plant Science, 2001, 6, 407-413.	8.8	243
6	Purine and Pyrimidine Nucleotide Synthesis and Metabolism. The Arabidopsis Book, 2002, 1, e0018.	0.5	235
7	Caffeine synthase gene from tea leaves. Nature, 2000, 406, 956-957.	27.8	199
8	Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant and Cell Physiology, 2008, 49, 1378-1389.	3.1	165
9	Purification and Characterization of Caffeine Synthase from Tea Leaves1. Plant Physiology, 1999, 120, 579-586.	4.8	122
10	Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabicaL.)1. FEBS Letters, 2003, 534, 75-81.	2.8	108
11	Distribution and biosynthesis of caffeine in plants. Frontiers in Bioscience - Landmark, 2004, 9, 1864.	3.0	107
12	Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry, 2010, 71, 559-566.	2.9	105
13	Purine and purine alkaloid metabolism in Camellia and Coffea plants. Phytochemistry, 1992, 31, 2575-2584.	2.9	100
14	Biosynthesis and Metabolism of Caffeine and Related Purine Alkaloids in Plants. Advances in Botanical Research, 1999, 30, 117-205.	1.1	100
15	Biosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensis. Phytochemistry Letters, 2008, 1, 115-119.	1.2	98
16	Caffeine biosynthesis in young leaves of Camellia sinensis: In vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiologia Plantarum, 1996, 98, 629-636.	5.2	94
17	Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings. Plant Science, 2004, 166, 807-813.	3.6	91
18	The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.)1. FEBS Letters, 2003, 547, 56-60.	2.8	85

#	Article	IF	CITATIONS
19	Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 2006, 171, 242-250.	3.6	85
20	Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Molecular Genetics and Genomics, 2006, 275, 125-135.	2.1	81
21	A new caffeine biosynthetic pathway in tea leaves: utilisation of adenosine released from the S -adenosyl-L -methionine cycle. FEBS Letters, 2001, 499, 50-54.	2.8	77
22	Metabolism of Caffeine and Related Purine Alkaloids in Leaves of Tea (Camellia sinensis L.). Plant and Cell Physiology, 1997, 38, 413-419.	3.1	75
23	Theacrine (1,3,7,9-tetramethyluric acid) synthesis in leaves of a Chinese tea, kucha (Camellia assamica) Tj ETQq1	1 0.78431	.4 _{.7g} BT /Ov∈
24	Secondary Metabolites in Fruits, Vegetables, Beverages and Other Plant-based Dietary Components. , 0, , 208-302.		73
25	Metabolism of alkaloids in coffee plants. Brazilian Journal of Plant Physiology, 2006, 18, 1-8.	0.5	73
26	Metabolic Alterations in Organic Acids and γ-Aminobutyric Acid in Developing Tomato (Solanum) Tj ETQq0 0 0 rg	BT /Overlc 3.1	ck_10 Tf 50
27	Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health. Phytochemistry Reviews, 2015, 14, 765-798.	6.5	66
28	Seasonal variations in biosynthetic capacity for the synthesis of caffeine in tea leaves. Phytochemistry, 1991, 30, 2245-2248.	2.9	65
29	Purine salvage in plants. Phytochemistry, 2018, 147, 89-124.	2.9	65
30	Patterns of adenine metabolism and caffeine biosynthesis in different parts of tea seedlings. Physiologia Plantarum, 1986, 68, 275-281.	5.2	59
31	Metabolic fate of nicotinamide in higher plants. Physiologia Plantarum, 2007, 131, 191-200.	5.2	58
32	Pyridine nucleotide cycle and trigonelline (N-methylnicotinic acid) synthesis in developing leaves and fruits of Coffea arabica. Physiologia Plantarum, 2004, 122, 404-411.	5.2	57
33	Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. Journal of Experimental Botany, 2005, 56, 1615-1623.	4.8	56
34	Distribution and biosynthesis of theanine in Theaceae plants. Plant Physiology and Biochemistry, 2010, 48, 70-72.	5.8	56
35	Biosynthesis and metabolism of purine alkaloids in leaves of cocoa tea (Camellia ptilophylla). Journal of Plant Research, 1998, 111, 599-604.	2.4	55
36	Pyrimidine Nucleotide Biosynthesis inVinca roseaCells: Changes in the Activity of thede novoand Salvage Pathways during Growth in a Suspension Culture. Journal of Experimental Botany, 1981, 32, 69-78.	4.8	53

#	Article	IF	CITATIONS
37	Changes in activities of the de novo and salvage pathways of pyrimidine nucleotide biosynthesis during germination of black gram (Phaseolus mungo) seeds. Zeitschrift Für Pflanzenphysiologie, 1977, 81, 199-211.	1.4	52
38	Changes in the activity of enzymes involved in purine "salvage" and nucleic acid degradation during the growth of Catharanthus roseus cells in suspension culture. Physiologia Plantarum, 1984, 60, 532-538.	5.2	51
39	Metabolic Fate of [8-14C]Adenine and [8-14C]Hypoxanthine in Higher Plants. Zeitschrift Für Pflanzenphysiologie, 1981, 104, 443-458.	1.4	50
40	Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants. Progress in the Chemistry of Organic Natural Products, 2017, 105, 1-88.	1.1	50
41	Effect of Inorganic Phosphate on the Biosynthesis of Purine and Pyrimidine Nucleotides in Suspension-Cultured Cells of Catharanthus roseus*. Annals of Botany, 1988, 61, 225-232.	2.9	49
42	Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Species ofCoffea. Journal of Agricultural and Food Chemistry, 1999, 47, 3425-3431.	5.2	49
43	Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum) Tj ETQq1 1	0.78431	4 rgBT /Over
44	De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells. Plant Science, 2005, 169, 107-114.	3.6	49
45	Absorption and Metabolism of Dietary Plant Secondary Metabolites. , 0, , 303-351.		49
46	Purine metabolism during white spruce somatic embryo development: salvage of adenine, adenosine, and inosine. Plant Science, 2001, 160, 647-657.	3.6	48
47	Occurrence, Biosynthesis and Metabolism of Theanine (γ-Glutamyl-L-ethylamide) in Plants: A Comprehensive Review. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	48
48	Metabolism of purine bases, nucleosides and alkaloids in theobromine-forming Theobroma cacao leaves. Plant Physiology and Biochemistry, 2003, 41, 977-984.	5.8	46
49	Biosynthesis of Chlorogenic Acids in Growing and Ripening Fruits of Coffea arabica and Coffea canephora Plants. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 731-742.	1.4	45
50	Profiles of Purine Metabolism in Leaves and Roots of Camellia sinensis Seedlings. Plant and Cell Physiology, 2010, 51, 2105-2118.	3.1	45
51	Biosynthesis, accumulation and degradation of theobromine in developing Theobroma cacao fruits. Journal of Plant Physiology, 2004, 161, 363-369.	3.5	44
52	Changes in the Activities of the Pentose Phosphate Pathway and Pyrimidine Nucleotide Biosynthesis during the Growth of Vinca rosea Cells in Suspension Culture. Zeitschrift Für Pflanzenphysiologie, 1979, 93, 437-448.	1.4	43
53	Characterization and Regulatory Properties of Glucose-6-Phosphate Dehydrogenase from Black Gram (Phaseolus mungo). Physiologia Plantarum, 1976, 36, 52-59.	5.2	42
54	Adenine metabolism and the synthesis of purine alkaloids in flowers of Camellia. Phytochemistry, 1990, 29, 3513-3516.	2.9	42

#	Article	IF	CITATIONS
55	Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta, 2006, 225, 115-126.	3.2	42
56	Ethylamine Content and Theanine Biosynthesis in Different Organs of Camellia sinensis Seedlings. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2009, 64, 387-390.	1.4	42
57	Distribution, Biosynthesis and Catabolism of Methylxanthines in Plants. Handbook of Experimental Pharmacology, 2011, , 11-31.	1.8	42
58	Profiles of Phenolic Compounds and Purine Alkaloids during the Development of Seeds of <i>Theobroma cacao</i> cv. Trinitario. Journal of Agricultural and Food Chemistry, 2013, 61, 427-434.	5.2	42
59	Purine and pyrimidine metabolism in cultured white spruce (Picea glauca) cells: Metabolic fate of 14 C-labeled precursors and activity of key enzymes. Physiologia Plantarum, 2000, 108, 25-33.	5.2	41
60	Purine metabolism and the biosynthesis of caffeine in mat $ ilde{A}$ $ ilde{C}$ leaves. Phytochemistry, 1993, 33, 1427-1430.	2.9	40
61	Compatible Solutes and Inorganic Ions in the Mangrove Plant Avicennia marina and Their Effects on the Activities of Enzymes. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1997, 52, 433-440.	1.4	40
62	Changes in Activities of Purine Salvage and Ureide Synthesis during Germination of Black Gram (Phaseolus mungo) Seeds. Zeitschrift Für Pflanzenphysiologie, 1983, 113, 47-60.	1.4	38
63	Catabolism of adenine nucleotides in suspension-cultured plant cells. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 474-480.	2.4	37
64	Identification of non-equilibrium glycolytic reactions in suspension-cultured plant cells. Biochimica Et Biophysica Acta - General Subjects, 1990, 1036, 138-142.	2.4	36
65	Biosynthesis of theobromine and caffeine in developing leaves of Coffea arabica. Phytochemistry, 1994, 36, 1359-1361.	2.9	36
66	Contribution Purine Nucleotide Biosynthesis de novo to the Formation of Caffeine in Young Tea (Camellia sinensis) Leaves. Journal of Plant Physiology, 1999, 154, 145-151.	3.5	36
67	Effects of inorganic phosphate on sugar catabolism by suspension-cultured Catharanthus roseus. Phytochemistry, 1990, 29, 497-500.	2.9	35
68	Phosphate Starvation and a Glycolytic Bypass Catalyzed by Phosphoenolpyruvate Carboxylase in Suspension-Cultured Catharanthus roseus Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1994, 49, 742-750.	1.4	35
69	Effect of short-term salt stress on the metabolic profiles of pyrimidine, purine and pyridine nucleotides in cultured cells of the mangrove tree, Bruguiera sexangula. Physiologia Plantarum, 2006, 128, 405-414.	5.2	35
70	Effect of nicotinic acid, nicotinamide and trigonelline on the proliferation of lettuce cells derived from protoplasts. Phytochemistry Letters, 2014, 7, 38-41.	1.2	35
71	Theophylline metabolism in higher plants. Biochimica Et Biophysica Acta - General Subjects, 1997, 1336, 323-330.	2.4	34
72	Purine and pyrimidine metabolism during the partial drying treatment of white spruce (Picea glauca) somatic embryos. Physiologia Plantarum, 2001, 111, 93-101.	5.2	34

#	Article	IF	CITATIONS
73	Inorganic Phosphate Absorption and its Effect on the Adenosine 5′-triphosphate Level in Suspension Cultured Cells of Catharanthus roseus. Journal of Plant Physiology, 1986, 124, 77-85.	3.5	33
74	Changes in Adenine Nucleotide Levels and Adenine Salvage During the Growth of Vinca rosea Cells in Suspension Culture. Zeitschrift Für Pflanzenphysiologie, 1982, 106, 191-198.	1.4	32
75	Purine metabolism in cells of a mangrove plant, Sonneratia alba, in tissue culture. Journal of Plant Physiology, 1996, 149, 133-137.	3.5	31
76	Metabolic fate of guanosine in higher plants. Physiologia Plantarum, 1997, 100, 909-916.	5.2	30
77	Effect of salt stress on the metabolism of ethanolamine and choline in leaves of the betaine-producing mangrove species Avicennia marina. Phytochemistry, 2003, 64, 941-948.	2.9	30
78	Enzyme and metabolite profiles of the pentose phosphate pathway in hypocotyls of Phaseolus mungo seedlings. Plant Science Letters, 1974, 2, 331-337.	1.8	29
79	Comparison of Activities and Properties of Pyrophosphate and Adenosine Triphosphate-Dependent Phosphofructokinases of Black Gram (Phaseolus mungo) Seeds. Journal of Plant Physiology, 1984, 116, 241-252.	3.5	28
80	Uptake and Metabolism of Sugars by Suspension Cultured Catharanthus roseus Cells. Annals of Botany, 1989, 64, 185-193.	2.9	28
81	Metabolic Fate of Inorganic Phosphate Absorbed by Suspension Cultured Cells of Catharanthus roseus. Journal of Plant Physiology, 1985, 118, 227-235.	3.5	27
82	Subcellular localization of the N-3 methyltransferase involved in caffeine biosynthes in tea. Phytochemistry, 1998, 48, 777-779.	2.9	27
83	Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of N-methyltransferase genes. Phytochemistry, 2006, 67, 882-886.	2.9	27
84	Expression of Caffeine Biosynthesis Genes in Tea (Camellia sinensis). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 267-270.	1.4	27
85	Orotate Phosphoribosyltransferase and Orotidine-5'-monophosphate Decarboxylase of Black Gram (Phaseolus mungo) Seedlings. Zeitschrift Für Pflanzenphysiologie, 1978, 87, 225-241.	1.4	26
86	Changes in Levels of Cellular Constituents in Suspension Culture of Catharanthus roseus Associated with Inorganic Phosphate Depletion. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1986, 41, 1045-1051.	1.4	26
87	Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum) Tj ETQq	1 1 0,78431 3.2	14 rgBT /Over
88	Biosynthesis and Catabolism of Purine Alkaloids. Advances in Botanical Research, 2013, , 111-138.	1.1	26
89	Regulation of the activities of some enzymes of the pentose phosphate pathway in Phaseolus mungo. Zeitschrift Für Pflanzenphysiologie, 1974, 74, 130-142.	1.4	25
90	Effect of phosphate deficiency on the content and biosynthesis of anthocyanins and the expression of related genes in suspension-cultured grape (Vitis sp.) cells. Plant Physiology and Biochemistry, 2012, 55, 77-84.	5.8	25

#	Article	IF	CITATIONS
91	Adenine Phosphoribosyltransferase of Catharanthus roseus Cells: Purification, Properties and Regulation. Zeitschrift Für Pflanzenphysiologie, 1983, 110, 135-145.	1.4	24
92	Subcellular distribution and activity of enzymes involved in uridine-5′-monophosphate synthesis in Vinca rosea cells. Zeitschrift Für Pflanzenphysiologie, 1980, 96, 7-16.	1.4	23
93	Profiles of Enzymes Involved in Glycolysis in Catharanthus roseus Cells in Batch Suspension Culture. Journal of Plant Physiology, 1988, 133, 38-45.	3.5	23
94	Pyrimidine metabolism during somatic embryo development in white spruce (Picea glauca). Journal of Plant Physiology, 2001, 158, 613-621.	3.5	23
95	Pyrimidine nucleotide and nucleic acid synthesis in embryos and megagametophytes of white spruce (Picea glauca) during germination. Physiologia Plantarum, 2002, 115, 155-165.	5.2	23
96	Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin. FEBS Letters, 2003, 554, 473-477.	2.8	23
97	Effect of long-term phosphate starvation on the levels and metabolism of purine nucleotides in suspension-cultured Catharanthus roseus cells. Phytochemistry, 2006, 67, 132-141.	2.9	23
98	Production of a new low-caffeine hybrid coffee and the biochemical mechanism of low caffeine accumulation. Euphytica, 2008, 164, 133-142.	1.2	23
99	Pyrimidine Nucleotide Biosynthesis During Somatic Embryogenesis in a Carrot Cell Suspension Culture. Zeitschrift FÃ1⁄4r Pflanzenphysiologie, 1981, 104, 129-137.	1.4	22
100	Effect of Inorganic Phosphate on the Levels of Amino Acids in Suspension-cultured Cells of Catharanthus roseus*. Annals of Botany, 1987, 60, 109-114.	2.9	22
101	Caffeine Metabolism in High and Low Caffeine Containing Cultivars of Camellia sinensis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1995, 50, 602-607.	1.4	21
102	Uptake of inorganic ions and compatible solutes in cultured mangrove cells during salt stress. In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 82-85.	2.1	21
103	Purine and pyrimidine metabolism in cultured white spruce (Picea glauca) cells: Metabolic fate of 14 C-labeled precursors and activity of key enzymes. Physiologia Plantarum, 2000, 108, 25-33.	5.2	21
104	Comparison of adenosine metabolism in leaves of several mangrove plants and a poplar species. Plant Physiology and Biochemistry, 2003, 41, 133-139.	5.8	21
105	Dual function of pyrimidine metabolism in potato (Solanum tuberosum) plants: pyrimidine salvage and supply of beta-alanine to pantothenic acid synthesis. Physiologia Plantarum, 2006, 127, 38-43.	5.2	21
106	Comparison of the formation of nicotinic acid conjugates in leaves of different plant species. Plant Physiology and Biochemistry, 2012, 60, 190-195.	5.8	21
107	Characterization of phosphoribosylpyrophosphate synthetase from spinach leaves. Zeitschrift Für Pflanzenphysiologie, 1977, 83, 379-392.	1.4	20
108	Content and Availability of 5-Phosphoribosyl-1-pyrophosphate in Cultured Cells of Catharanthus roseus. Zeitschrift FÃ1⁄4r Pflanzenphysiologie, 1983, 110, 183-190.	1.4	20

#	Article	IF	CITATIONS
109	Presence of adenine phosphoribosyltransferase and adenosine kinase in chloroplasts of spinach leaves. International Journal of Biochemistry & Cell Biology, 1985, 17, 1275-1277.	0.5	20
110	AMP deaminase and the control of adenylate catabolism in suspension-cultured Catharanthus roseus cells. Phytochemistry, 1992, 31, 1905-1909.	2.9	20
111	Salt stress and glycolytic regulation in suspension-cultured cells of the mangrove tree, Bruguiera sexangula. Physiologia Plantarum, 2005, 123, 246-253.	5.2	20
112	Purine nucleotide and RNA synthesis in suspension cultured cells of carrot. Physiologia Plantarum, 1989, 75, 31-36.	5.2	19
113	Profiles of Purine and Pyrimidine Nucleotides in Fresh and Manufactured Tea Leaves. Journal of Agricultural and Food Chemistry, 2001, 49, 4378-4382.	5.2	19
114	Fine control of caffeine biosynthesis in tissue cultures of Camellia sinensis. Phytochemistry Letters, 2008, 1, 195-198.	1.2	19
115	Changs in pyrimidine nucleotide biosynthesis during germination of white spruce (picea glauca) somatic embryos. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 285-292.	2.1	18
116	Role ofÂadenosine salvage inÂwound-induced adenylate biosynthesis inÂpotato tuber slices. Plant Physiology and Biochemistry, 2006, 44, 551-555.	5.8	18
117	Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings. Phytochemistry, 2008, 69, 390-395.	2.9	18
118	Brassinolide-improved development of Brassica napus microspore-derived embryos is associated with increased activities of purine and pyrimidine salvage pathways. Planta, 2011, 233, 95-107.	3.2	18
119	Comparison of Purine Metabolism in Suspension Cultured Cells of Different Growth Phases and Stem Tissue of Catharanthus roseus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1983, 38, 375-381.	1.4	17
120	Purine Salvage in Mitochondria of Cultured Catharanthus roseus Cells. Journal of Plant Physiology, 1986, 125, 191-197.	3.5	17
121	Effect of inorganic phosphate on synthesis of 5-phosphoribosyl-1-pyrophosphate in cultured plant cells. International Journal of Biochemistry & Cell Biology, 1987, 19, 1127-1131.	0.5	17
122	Glucose catabolism during aging and differentiation in hypocotyls ofPhaseolus mungo seedlings. Botanical Magazine, 1974, 87, 121-131.	0.6	16
123	Effects of Inorganic Phosphate on the Utilization of Sucrose by Suspension-cultured Catharanthus roseus Cells*. Annals of Botany, 1989, 64, 33-36.	2.9	16
124	Involvement of rapid nucleotide synthesis in recovery from phosphate starvation of Catharanthus roseus cells. Journal of Experimental Botany, 2007, 58, 1025-1033.	4.8	16
125	Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures. Phytochemistry, 2008, 69, 2891-2898.	2.9	16

126 Metabolism of nicotinamide, adenine and inosine in developing microspore-derived canola (Brassica) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
127	Biosynthesis of pyrimidine nucleotides and arginine in a suspension culture of Catharanthus roseus. International Journal of Biochemistry & Cell Biology, 1988, 20, 87-92.	0.5	15
128	A high-performance liquid chromatography method for separation of purine bases, nucleosides and ureides: application to studies on purine catabolism in higher plants. Journal of Proteomics, 1990, 21, 59-63.	2.4	15
129	Alkaloids. , 0, , 102-136.		15
130	Nicotinate riboside salvage in plants: Presence of nicotinate riboside kinase in mungbean seedlings. Plant Physiology and Biochemistry, 2008, 46, 104-108.	5.8	15
131	Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism. Journal of Plant Research, 2012, 125, 781-791.	2.4	15
132	Fine Control of Purine Nucleotide Biosynthesis in Intact Cells of Catharanthus roseus. Journal of Plant Physiology, 1984, 116, 417-423.	3.5	14
133	A Simple Analysis of Purine and Pyrimidine Nucleotides in Plant Cells by High-Performance Liquid Chromatography. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1987, 42, 297-299.	1.4	14
134	Terpenes. , 0, , 47-101.		14
135	Regulatory properties of a plant phosphoribosylpyrophospate synthetase. Plant Science Letters, 1974, 2, 119-123.	1.8	13
136	Adenine Phosphoribosyltransferase Activity in Mitochondria of Catharanthus roseus Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1982, 37, 1288-1289.	1.4	13
137	Nicotinamide metabolism in ferns: Formation of nicotinic acid glucoside. Plant Physiology and Biochemistry, 2011, 49, 275-279.	5.8	13
138	Characterization of Hexokinase and Fructokinase from Suspension-Cultured Catharanthus roseus Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1988, 43, 827-834.	1.4	12
139	The Effect of Salt Stress on the Catabolism of Sugars in Leaves and Roots of a Mangrove Plant, Avicennia marina. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1997, 52, 187-192.	1.4	12
140	Wound-Induced Respiration and Pyrophosphate:fructose-6-phosphate Phosphotransferase in Potato Tubers. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 953-956.	1.4	12
141	Trigonelline (<i>N</i> -methylnicotinic acid) Biosynthesis and its Biological Role in Plants. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	12
142	Pyridine salvage and nicotinic acid conjugate synthesis in leaves of mangrove species. Phytochemistry, 2010, 71, 47-53.	2.9	12
143	Occurrence and <i>De novo</i> Biosynthesis of Caffeine and Theanine in Seedlings of Tea (<i>Camellia) Tj ETQq1</i>	10.78432 0.5	14.rgBT /Ove
144	The function of the pentose phosphate pathway in Phaseolus mungo hypocotyls. Phytochemistry, 1975, 14, 95-98.	2.9	11

#	Article	IF	CITATIONS
145	Regulation of the Activity of Spinach Phosphoribosylpyrophosphate Synthetase by «Energy Charge» and End Products. Zeitschrift FÃ1⁄4r Pflanzenphysiologie, 1977, 85, 383-392.	1.4	11
146	Pyrophosphate: fructose-6-phosphate 1-phosphotransferase and biosynthetic capacity during differentiation of hypocotyls of Vigna seedlings. Biochimica Et Biophysica Acta - General Subjects, 1993, 1156, 123-127.	2.4	11
147	Purine Alkaloid Biosynthesis in Young Leaves of Camellia sinensis in Light and Darkness. Journal of Plant Research, 2000, 113, 217-221.	2.4	11
148	Levels of metabolites related to glycolysis in Catharanthus roseus cells during cultureâ~†. Phytochemistry, 1993, 34, 1509-1513.	2.9	10
149	Pyrimidine deoxyribonucleotide metabolism during maturation and germination of white spruce (Picea) Tj ETQq1 Physiologia Plantarum, 2003, 118, 499-506.	1 0.78431 5.2	4 rgBT /Ove 10
150	Sulphur-Containing Compounds. , 0, , 25-46.		10
151	Changes of purine and pyrimidine nucleotide biosynthesis during shoot initiation from epicotyl explants of white spruce (Picea glauca). Plant Science, 2006, 171, 345-354.	3.6	10
152	Long-term effect of NaCl on the activity of uridine and uracil salvage for nucleotide synthesis in cultured mangrove (Bruguiera sexangula) cells. Plant Science, 2009, 176, 383-389.	3.6	10
153	Trigonelline biosynthesis and the pyridine nucleotide cycle in Coffea arabica fruits: Metabolic fate of [carboxyl-14C]nicotinic acid riboside. Phytochemistry Letters, 2011, 4, 235-239.	1.2	10
154	Effect of Purine Alkaloids on the Proliferation of Lettuce Cells Derived from Protoplasts. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	10
155	Role of Pyrophosphate: Fructose-6-phosphate 1-Phosphotransferase in Glycolysis in Cultured Catharanthus roseus Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1987, 42, 1215-1222.	1.4	10
156	The mechanism of changes in respiratory activity during callus formation in carrot root slices cultured in vitro. Plant and Cell Physiology, 1972, 13, 821-829.	3.1	9
157	Interrelationship between the pentose phosphate pathway and nucleotide synthesis in cultured cells of Catharanthus roseus. Plant Science Letters, 1984, 35, 123-126.	1.8	9
158	Xanthosine metabolism in plants: Metabolic fate of exogenously supplied 14C-labelled xanthosine and xanthine in intact mungbean seedlings. Phytochemistry Letters, 2012, 5, 100-103.	1.2	9
159	Pyridine metabolism and trigonelline synthesis in leaves of the mangrove legume trees Derris indica (Millettia pinnata) and Caesalpinia crista. Natural Product Communications, 2011, 6, 1835-8.	0.5	9
160	IMP dehydrogenase from tea leaves and suspension-cultured Catharanthus roseus cells. Phytochemistry, 1993, 34, 613-615.	2.9	8
161	Changes in deoxyribonucleotide biosynthesis during carrot somatic embryogenesis. Plant Physiology and Biochemistry, 2003, 41, 779-785.	5.8	8
162	Comparative studies on pyrimidine metabolism in excised cotyledons of Pinus radiata during shoot formation in vitro. Journal of Plant Physiology, 2007, 164, 429-441.	3.5	8

HIROSHI ASHIHARA IF CITATIONS Pyrimidine salvage and catabolism in leaves of mangrove species. Plant Science, 2008, 174, 140-148. Plant Biochemistry., 2015, , 19-28. 8 Changes in Fructose-2,6-bisphosphate Level during the Growth of Suspension Cultured Cells of Catharanthus roseus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1986, 41, 1.4 Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts. Natural 0.5 8 Product Communications, 2015, 10, 751-4. Metabolism of Pyrimidines in Protoplasts from Cultured Catharanthus roseus Cells*. Annals of 2.9 The Short-Term Effects of Inorganic Phosphate on the Levels of Metabolites in Suspension-Cultured Catharanthus roseus Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 1.4 7 Distinct fluctuations in nucleotide metabolism accompany the enhanced in vitro embryogenic capacity 3.2 of Brassica cells over-expressing SHOOTMERISTEMLESS. Planta, 2011, 234, 1251-1265. Purine Alkaloids, Cytokinins, and Purine-Like Neurotoxin Alkaloids., 2013, , 953-975. 7

170	Purine Alkaloids, Cytokinins, and Purine-Like Neurotoxin Alkaloids. , 2013, , 953-975.		7
171	Accumulation and Function of Trigonelline in Non-leguminous Plants. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	7
172	The cup that cheers: Caffeine biosynthesis: biochemistry and molecular biology. Biochemist, 2006, 28, 23-26.	0.5	7
173	Phosphoenolpyruvate Carboxylase from Heterotrophically Cultured Catharanthus roseus Cells. Annals of Botany, 1994, 74, 417-422.	2.9	6
174	The Co-Occurrence of Two Pyridine Alkaloids, Mimosine and Trigonelline, in Leucaena leucocephala. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2014, 69, 124-132.	1.4	6
175	Metabolism of purine alkaloids and xanthine in leaves of maté (Ilex paraguariensis). Natural Product Communications, 2015, 10, 707-12.	0.5	6
176	Isoenzymes of phosphogluconate dehydrogenase (decarboxylating) from suspension-cultured Catharanthus roseus cells. Phytochemistry, 1993, 33, 1307-1311.	2.9	5
177	Biosynthesis and Catabolism of Purine Alkaloids in <i>Camellia</i> Plants. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	5
178	CAFFEINE BIOSYNTHESIS AND PURINE METABOLISM IN LEAVES OF MASCAROCOFFEA SPECIES. European Chemical Bulletin, 2017, 6, 223.	2.7	5
179	Effect of caffeine on the expression pattern of water-soluble proteins in rice (Oryza sativa) seedlings. Natural Product Communications, 2015, 10, 733-6.	0.5	5
180	Pyridine Metabolism and Trigonelline Synthesis in Leaves of the Mangrove Legume trees Derris indica (Millettia pinnata) and Caesalpinia crista. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	4

11

#

164

166

168

ARTICLE

529-531.

44, 802-806.

Botany, 1987, 6Ó, 417-420.

#	Article	IF	CITATIONS
181	The Effect of Fructose-2,6-bisphosphate on 6-Phosphogluconate Dehydrogenase from Cultured Cells of Catharanthus roseus. Journal of Plant Physiology, 1988, 133, 605-607.	3.5	3
182	Expression of Glucose-6-phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase Isoform Genes in Suspension-Cultured Arabidopsis thaliana Cells. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 713-720.	1.4	3
183	Phosphate levels and expression of phosphoribosylpyrophosphate synthetase isozymes in suspension-cultured Arabidopsis thaliana cells. Phytochemistry Letters, 2009, 2, 126-129.	1.2	3
184	Evidence for Deposition of Cellulose Prior to Dark-starvation Treatment During Spherulation in Physarum microplasmodia. Cytologia, 2010, 75, 397-407.	0.6	3
185	Pyrophosphate: Fructose-6-phosphate Phosphotransferase and Gluconeogenic Capacity in Germinated Peanut Seeds. Biochemie Und Physiologie Der Pflanzen, 1992, 188, 145-151.	0.5	2
186	Effect of Caffeine on the Expression Pattern of Water-Soluble Proteins in Rice (<i>Oryza sativa</i>) Seedlings. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	2
187	Short-term effect of caffeine on purine, pyrimidine and pyridine metabolism in rice (Oryza sativa) seedlings. Natural Product Communications, 2015, 10, 737-41.	0.5	2
188	Metabolic fate of guanosine in higher plants. Physiologia Plantarum, 1997, 100, 909-916.	5.2	1
189	Pathways Involved in the Metabolism of Caffeine by Coffea and Camellia Plants. ACS Symposium Series, 2000, , 9-19.	0.5	1
190	Functions of the Human Intestinal Flora: The Use of Probiotics and Prebiotics. , 0, , 174-207.		1
191	Metabolic Fate of ¹⁴ C-Labelled Nicotinamide and Adenine in Germinating Propagules of the Mangrove Bruguiera gymnorrhiza. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2012, 67, 319-326.	1.4	1
192	Metabolism of Purine Alkaloids and Xanthine in Leaves of Maté (<i>llex paraguariensis</i>). Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	1
193	Biosynthetic Pathways of Purine and Pyridine Alkaloids in Coffee Plants. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
194	De novo Biosynthesis of Trigonelline in Fenugreek (Trigonella foenum-graecum) seedlings. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
195	Accumulation of noncrystalline cellulose in Physarum microplasmodia. Protoplasma, 2013, 250, 1105-1113.	2.1	0
196	Short Term Effect of Caffeine on Purine, Pyrimidine and Pyridine Metabolism in Rice (Oryza sativa) Seedlings. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	0
197	Nucleic Acid Metabolism. , 2004, , 833-838.		0