Pauline Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1133290/publications.pdf

Version: 2024-02-01

84 5,100 37
papers citations h-index

h-index g-index

86 6125
times ranked citing authors

91828

69

86 all docs 86 docs citations

#	Article	IF	CITATIONS
1	Splenic erythroid progenitors decrease TNFâ€Î± production by macrophages and reduce systemic inflammation in a mouse model of T cellâ€induced colitis. European Journal of Immunology, 2021, 51, 567-579.	1.6	10
2	Inflammation-Induced Metastatic Colonization of the Lung Is Facilitated by Hepatocyte Growth Factor-Secreting Monocyte-Derived Macrophages. Molecular Cancer Research, 2021, 19, 2096-2109.	1.5	5
3	Regulation of CD71+TER119+ erythroid progenitor cells by CD45. Experimental Hematology, 2020, 86, 53-66.e1.	0.2	12
4	CD44 Loss Disrupts Lung Lipid Surfactant Homeostasis and Exacerbates Oxidized Lipid-Induced Lung Inflammation. Frontiers in Immunology, 2020, $11,29$.	2.2	26
5	Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell, 2018, 172, 305-317.e10.	13.5	170
6	Hyaluronanâ€binding by CD44 reduces the memory potential of activated murine CD8 T cells. European Journal of Immunology, 2018, 48, 803-814.	1.6	6
7	The survival of fetal and bone marrow monocyte-derived alveolar macrophages is promoted by CD44 and its interaction with hyaluronan. Mucosal Immunology, 2018, 11, 601-614.	2.7	36
8	Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Frontiers in Immunology, 2018, 9, 2787.	2.2	69
9	ATG Genes Influence the Virulence of Cryptococcus neoformans through Contributions beyond Core Autophagy Functions. Infection and Immunity, 2018, 86, .	1.0	25
10	CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment. PLoS ONE, 2018, 13, e0196011.	1.1	12
11	CD45 (PTPRC)., 2018,, 912-919.		1
12	CD45 regulates GM-CSF, retinoic acid and T-cell homing in intestinal inflammation. Mucosal Immunology, 2016, 9, 1514-1527.	2.7	7
13	Endotoxin free hyaluronan and hyaluronan fragments do not stimulate TNF- $\hat{l}\pm$, interleukin-12 or upregulate co-stimulatory molecules in dendritic cells or macrophages. Scientific Reports, 2016, 6, 36928.	1.6	60
14	Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow. Journal of Visualized Experiments, 2016, , .	0.2	8
15	CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts. Oncotarget, 2016, 7, 64785-64797.	0.8	23
16	The Where, When, How, and Why of Hyaluronan Binding by Immune Cells. Frontiers in Immunology, 2015, 6, 150.	2.2	129
17	Hyaluronan Binding Identifies a Functionally Distinct Alveolar Macrophage–like Population in Bone Marrow–Derived Dendritic Cell Cultures. Journal of Immunology, 2015, 195, 632-642.	0.4	21
18	Innate Immune Cell CD45 Regulates Lymphopenia-Induced T Cell Proliferation. Journal of Immunology, 2014, 193, 2831-2842.	0.4	7

#	Article	IF	CITATIONS
19	Arginase activity in alternatively activated macrophages protects PI3Kp110Î deficient mice from dextran sodium sulfate induced intestinal inflammation. European Journal of Immunology, 2014, 44, 3353-3367.	1.6	50
20	Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Environmental Microbiology Reports, 2013, 5, 200-210.	1.0	82
21	Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses. Journal of Immunology, 2011, 186, 5497-5505.	0.4	142
22	The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Letters, 2011, 585, 3549-3554.	1.3	76
23	CD44-mediated elongated T cell spreading requires Pyk2 activation by Src family kinases, extracellular calcium, phospholipase C and phosphatidylinositol-3 kinase. Cellular Signalling, 2011, 23, 812-819.	1.7	12
24	Hyaluronan binding identifies the most proliferative activated and memory T cells. European Journal of Immunology, 2011, 41, 1108-1119.	1.6	21
25	Differential Use of Chondroitin Sulfate to Regulate Hyaluronan Binding by Receptor CD44 in Inflammatory and Interleukin 4-activated Macrophages. Journal of Biological Chemistry, 2011, 286, 19179-19190.	1.6	47
26	CD44 interacts directly with Lck in a zinc-dependent manner. Molecular Immunology, 2010, 47, 1882-1889.	1.0	21
27	Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cellular Signalling, 2010, 22, 339-348.	1.7	131
28	Y-Box Binding Protein-1 Induces the Expression of <i>CD44</i> and <i>CD49f</i> Leading to Enhanced Self-Renewal, Mammosphere Growth, and Drug Resistance. Cancer Research, 2010, 70, 2840-2851.	0.4	148
29	CD45 Regulates Migration, Proliferation, and Progression of Double Negative 1 Thymocytes. Journal of Immunology, 2010, 185, 2059-2070.	0.4	20
30	CD45-Mediated Fodrin Cleavage during Galectin-1 T Cell Death Promotes Phagocytic Clearance of Dying Cells. Journal of Immunology, 2009, 182, 7001-7008.	0.4	27
31	CD44 and its Role in Inflammation and Inflammatory Diseases. Inflammation and Allergy: Drug Targets, 2009, 8, 208-220.	1.8	163
32	Tyrosine Phosphorylation in Immune Cells: Direct and Indirect Effects on Toll-Like Receptor-Induced Proinflammatory Cytokine Production. Critical Reviews in Immunology, 2009, 29, 347-367.	1.0	25
33	Hyaluronan Induces Cell Death in Activated T Cells through CD44. Journal of Immunology, 2008, 181, 7044-7054.	0.4	58
34	CD45 Down-Regulates Lck-Mediated CD44 Signaling and Modulates Actin Rearrangement in T Cells. Journal of Immunology, 2008, 181, 7033-7043.	0.4	20
35	CD45 Regulates TLR-Induced Proinflammatory Cytokine and IFN- \hat{l}^2 Secretion in Dendritic Cells. Journal of Immunology, 2008, 180, 8020-8029.	0.4	29
36	Differential Function of PTPα and PTPα Y789F in T Cells and Regulation of PTPα Phosphorylation at Tyr-789 by CD45. Journal of Biological Chemistry, 2007, 282, 20925-20932.	1.6	17

#	Article	IF	Citations
37	Use of CD44 by CD4+ Th1 and Th2 lymphocytes to roll and adhere. Blood, 2006, 107, 4798-4806.	0.6	71
38	H2-M3-Restricted T Cells Participate in the Priming of Antigen-Specific CD4+ T Cells. Journal of Immunology, 2006, 177, 5098-5104.	0.4	12
39	Galectin-3 and Galectin-1 Bind Distinct Cell Surface Glycoprotein Receptors to Induce T Cell Death. Journal of Immunology, 2006, 176, 778-789.	0.4	448
40	Expression of N-acetylglucosamine 6-O-sulfotransferases (GlcNAc6STs)-1 and -4 in human monocytes: GlcNAc6ST-1 is implicated in the generation of the 6-sulfo N-acetyllactosamine/Lewis x epitope on CD44 and is induced by TNF-α. Glycobiology, 2005, 15, 7C-13C.	1.3	19
41	Expression of CD45 Lacking the Catalytic Protein Tyrosine Phosphatase Domain Modulates Lck Phosphorylation and T Cell Activation. Journal of Biological Chemistry, 2005, 280, 14318-14324.	1.6	14
42	Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding. Biochemical and Biophysical Research Communications, 2005, 334, 306-312.	1.0	17
43	Regulation of hyaluronan binding by F-actin and colocalization of CD44 and phosphorylated ezrin/radixin/moesin (ERM) proteins in myeloid cells. Experimental Cell Research, 2005, 303, 400-414.	1.2	39
44	Subdomain X of the Kinase Domain of Lck Binds CD45 and Facilitates Dephosphorylation. Journal of Biological Chemistry, 2004, 279, 3455-3462.	1.6	15
45	Role of CD44 and Hyaluronan in Neutrophil Recruitment. Journal of Immunology, 2004, 173, 7594-7601.	0.4	178
46	The noncatalytic domains of Lck regulate its dephosphorylation by CD45. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1650, 40-49.	1.1	12
47	A Cell Death Pathway Induced by Antibody-Mediated Cross-Linking of CD45 on Lymphocytes. Critical Reviews in Immunology, 2003, 23, 421-440.	1.0	11
48	Apoptosis Mediated Through CD45 Is Independent of Its Phosphatase Activity and Association with Leukocyte Phosphatase-Associated Phosphoprotein. Journal of Immunology, 2002, 168, 6084-6089.	0.4	26
49	TNF-Â increases the carbohydrate sulfation of CD44: induction of 6-sulfo N-acetyl lactosamine on N-and O-linked glycans. Glycobiology, 2002, 12, 613-622.	1.3	38
50	CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature, 2001, 409, 349-354.	13.7	501
51	CD44-initiated Cell Spreading Induces Pyk2 Phosphorylation, Is Mediated by Src Family Kinases, and Is Negatively Regulated by CD45. Journal of Biological Chemistry, 2001, 276, 28767-28773.	1.6	44
52	Role of Sulfation in CD44-Mediated Hyaluronan Binding Induced by Inflammatory Mediators in Human CD14+ Peripheral Blood Monocytes. Journal of Immunology, 2001, 167, 5367-5374.	0.4	59
53	A role for the cell adhesion molecule CD44 and sulfation in leukocyte–endothelial cell adhesion during an inflammatory response?. Biochemical Pharmacology, 2000, 59, 455-465.	2.0	78
54	Stable Interdomain Interaction within the Cytoplasmic Domain of CD45 Increases Enzyme Stability. Biochemical and Biophysical Research Communications, 2000, 271, 292-298.	1.0	25

#	Article	IF	CITATIONS
55	Determination of CD45 Tyrosine Phosphatase Activity in T Lymphocytes., 2000, 134, 289-300.		1
56	Chimeric CD4/CD44 molecules associate with CD44 via the transmembrane region and reduce hyaluronan binding in T cell lines. European Journal of Immunology, 1998, 28, 1745-1754.	1.6	15
57	The association between CD20 and Src-family Tyrosine kinases requires an additional factor. Molecular Immunology, 1998, 35, 207-214.	1.0	36
58	TNF- Induction of CD44-Mediated Leukocyte Adhesion by Sulfation. , 1998, 282, 941-943.		127
59	Characterization of Recombinant CD45 Cytoplasmic Domain Proteins. Journal of Biological Chemistry, 1998, 273, 17839-17845.	1.6	76
60	CD45 and RPTPα display different protein tyrosine phosphatase activities in T lymphocytes. Biochemical Journal, 1997, 327, 867-876.	1.7	17
61	Increase in the specific activity of p50csk in proliferating T cells correlates with decreased specific activity of p56lck and p59fyn and reduced phosphorylation of CD3 subunits. Molecular Immunology, 1996, 33, 531-540.	1.0	5
62	Demonstration of a Direct Interaction between p56 and the Cytoplasmic Domain of CD45 in Vitro. Journal of Biological Chemistry, 1996, 271, 1295-1300.	1.6	55
63	Detection of restricted isoform expression and tyrosine phosphatase activity of CD45 in murine dendritic cells. European Journal of Immunology, 1995, 25, 3370-3374.	1.6	3
64	Characterization of the Interaction between CD45 and CD45-AP. Journal of Biological Chemistry, 1995, 270, 21151-21157.	1.6	42
65	Association of 75/80-kDa Phosphoproteins and the Tyrosine Kinases Lyn, Fyn, and Lck with the B Cell Molecule CD20. Journal of Biological Chemistry, 1995, 270, 22632-22638.	1.6	86
66	Point Mutation in the Second Phosphatase Domain of CD45 Abrogates Tyrosine Phosphatase Activity. Biochemical and Biophysical Research Communications, 1995, 206, 302-309.	1.0	24
67	Non-radioactive method to measure CD45 protein tyrosine phosphatase activity isolated directly from cells. Journal of Immunological Methods, 1995, 179, 177-185.	0.6	25
68	Protein tyrosine phosphorylation in Mycobacterium tuberculosis. FEMS Microbiology Letters, 1994, 124, 203-207.	0.7	44
69	Isoforms of the transmembrane tyrosine phosphatase cd45 differentially affect T cell recognition. Immunity, 1994, 1, 109-119.	6.6	107
70	CD45: a leukocyte-specific member of the protein tyrosine phosphatase family. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1095, 46-56.	1.9	73
71	Differential expression of the alternatively spliced exons of murine CD45 in Th1 and Th2 cell clones. European Journal of Immunology, 1991, 21, 17-22.	1.6	51
72	Identification of the alternatively spliced exons of murine CD45 (T200) required for reactivity with B220 and other T200-restricted antibodies Journal of Experimental Medicine, 1989, 169, 1179-1184.	4.2	65

#	Article	IF	CITATIONS
73	Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6734-6738.	3.3	188
74	Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8959-8963.	3.3	456
75	CD8B, the human equivalent of the mouse Ly-3 gene is localized on chromosome 2. Immunogenetics, 1988, 27, 70-72.	1.2	19
76	Immunoglobulin-Related Structures Associated with Vertebrate Cell Surfaces., 1988,, 53-87.		8
77	A human homolog of the mouse CD8 molecule, Lyt-3: genomic sequence and expression. Immunogenetics, 1987, 26, 174-177.	1.2	38
78	Purification and sequence of the rat CDS antigen, a cytotoxic T-cell marker. Biochemical Society Transactions, 1986, 14, 90-90.	1.6	0
79	Striking similarities between antigen receptor J pieces and sequence in the second chain of the murine CD8 antigen. Nature, 1986, 323, 74-76.	13.7	65
80	Rotational Diffusion of Membrane Proteins Optical Methods. , 1985, , 421-439.		3
81	Carbocyanine dyes used as fluorescent triplet probes for measuring slow rotational diffusion of lipids in membranes. FEBS Letters, 1983, 153, 391-394.	1.3	10
82	Intracellular pH and free calcium changes in single cells using quene 1 and quin 2 probes and fluorescence microscopy. FEBS Letters, 1983, 161, 21-27.	1.3	60
83	Depolarization of fluorescence depletion. FEBS Letters, 1981, 132, 252-256.	1.3	69
84	Transmembrane Pickets Connect Cyto- and Exo-skeletons Forming Barriers to Receptor Engagement. SSRN Electronic Journal, 0, , .	0.4	0