Timothy J Barnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1133259/publications.pdf Version: 2024-02-01

TIMOTHY I RADNES

#	Article	IF	CITATIONS
1	Silica nanoparticle coated liposomes: A new type of hybrid nanocapsule for proteins. International Journal of Pharmaceutics, 2010, 392, 285-293.	5.2	129
2	Oxidized Mesoporous Silicon Microparticles for Improved Oral Delivery of Poorly Soluble Drugs. Molecular Pharmaceutics, 2010, 7, 227-236.	4.6	128
3	Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opinion on Drug Delivery, 2007, 4, 101-110.	5.0	115
4	Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Advances in Colloid and Interface Science, 2012, 175, 25-38.	14.7	107
5	PEOâ^'PPOâ^'PEO Block Copolymers at the Emulsion Dropletâ^'Water Interface. Langmuir, 2000, 16, 4116-4121.	3.5	79
6	PAMAM Dendrimer Interactions with Supported Lipid Bilayers: A Kinetic and Mechanistic Investigation. Langmuir, 2008, 24, 13532-13539.	3.5	54
7	PEGylation of Porous Silicon Using Click Chemistry. Langmuir, 2008, 24, 7625-7627.	3.5	51
8	Surface analysis for compositional, chemical and structural imaging in pharmaceutics with mass spectrometry: A ToF-SIMS perspective. International Journal of Pharmaceutics, 2011, 417, 61-69.	5.2	49
9	Thermal Oxidation for Controlling Protein Interactions with Porous Silicon. Langmuir, 2010, 26, 14316-14322.	3.5	46
10	Mechanistic Insight into Cell Growth, Internalization, and Cytotoxicity of PAMAM Dendrimers. Biomacromolecules, 2010, 11, 382-389.	5.4	44
11	Polymer and particle adsorption at the PDMS droplet-water interface. Advances in Colloid and Interface Science, 2004, 108-109, 105-118.	14.7	43
12	Peptide and protein loading into porous silicon wafers. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 311-315.	1.8	42
13	Impact of Thermal Oxidation on the Adsorptive Properties and Structure of Porous Silicon Particles. Journal of Physical Chemistry C, 2008, 112, 9717-9722.	3.1	40
14	Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids. Nanoscale, 2012, 4, 1220-1230.	5.6	40
15	Adsorption of Nonlamellar Nanostructured Liquid-Crystalline Particles to Biorelevant Surfaces for Improved Delivery of Bioactive Compounds. ACS Applied Materials & Interfaces, 2011, 3, 1771-1780.	8.0	39
16	Loading and release of a model protein from porous silicon powders. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3361-3366.	1.8	38
17	Aqueous and Thermal Oxidation of Porous Silicon Microparticles: Implications on Molecular Interactions. Langmuir, 2008, 24, 14222-14226.	3.5	38
18	The encapsulation and release of guanosine from PEGylated liposomes. Journal of Liposome Research, 2009, 19, 29-36.	3.3	37

TIMOTHY J BARNES

#	Article	IF	CITATIONS
19	Detecting the Presence of Denatured Human Serum Albumin in an Adsorbed Protein Monolayer Using TOFâ^'SIMS. Langmuir, 2010, 26, 12075-12080.	3.5	35
20	A lipid based multi-compartmental system: Liposomes-in-double emulsion for oral vaccine delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 15-21.	4.3	33
21	Porous nanostructure controls kinetics, disposition and self-assembly structure of lipid digestion products. RSC Advances, 2016, 6, 78385-78395.	3.6	33
22	Understanding the Interfacial Properties of Nanostructured Liquid Crystalline Materials for Surface-Specific Delivery Applications. Langmuir, 2012, 28, 13485-13495.	3.5	31
23	Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. Journal of Controlled Release, 2022, 346, 300-316.	9.9	30
24	Recent advances in porous silicon technology for drug delivery. Therapeutic Delivery, 2013, 4, 811-823.	2.2	29
25	Use of TOF-SIMS to study adsorption and loading behavior of methylene blue and papain in a nano-porous silicon layer. Journal of the American Society for Mass Spectrometry, 2010, 21, 254-260.	2.8	28
26	Surface chemical modification to control molecular interactions with porous silicon. Journal of Colloid and Interface Science, 2011, 363, 327-333.	9.4	28
27	A liposome-micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: Enhancing solubilisation and intestinal transport. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 338-347.	4.3	23
28	Oral delivery of protein-based therapeutics: Gastroprotective strategies, physiological barriers and in vitro permeability prediction. International Journal of Pharmaceutics, 2020, 585, 119488.	5.2	22
29	Time-of-flight secondary-ion mass spectrometry for the surface characterization of solid-state pharmaceuticals. Journal of Pharmacy and Pharmacology, 2010, 59, 251-259.	2.4	19
30	Physico-chemical Studies on the Interaction of Dendrimers with Lipid Bilayers. 1. Effect of Dendrimer Generation and Liposome Surface Charge. Journal of Oleo Science, 2014, 63, 1185-1193.	1.4	14
31	Silica Nanoparticle Stabilization of Liquid Crystalline Lipid Dispersions: Impact on Enzymatic Digestion and Drug Solubilization. Current Drug Delivery, 2015, 12, 47-55.	1.6	14
32	Impact of PEGylation and non-ionic surfactants on the physical stability of the therapeutic protein filgrastim (G-CSF). RSC Advances, 2016, 6, 78970-78978.	3.6	14
33	Recent advances in porous silicon-based therapeutic delivery. Therapeutic Delivery, 2015, 6, 97-100.	2.2	12
34	University Enterprise: The Growth and Impact of University-Related Companies in London. Industry and Higher Education, 2011, 25, 483-492.	2.2	9
35	A Comparison of Chitosan, Mesoporous Silica and Poly(lactic-co-glycolic) Acid Nanocarriers for Optimising Intestinal Uptake of Oral Protein Therapeutics. Journal of Pharmaceutical Sciences, 2021, 110, 217-227.	3.3	9
36	Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomaterials Science and Engineering, 2023, 9, 2819-2837.	5.2	9

TIMOTHY J BARNES

#	Article	IF	CITATIONS
37	Naphthalene Sulfonate Functionalized Dendrimers at the Solidâ^'Liquid Interface: Influence of Core Type, Ionic Strength, and Competitive Ionic Adsorbates. Langmuir, 2008, 24, 12398-12404.	3.5	6
38	Dendrimer adsorption on charged particulate surfaces. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 13-17.	1.5	5
39	Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability. Open Material Sciences, 2014, 1, .	0.8	5
40	Controlling and Predicting the Dissolution Kinetics of Thermally Oxidised Mesoporous Silicon Particles: Towards Improved Drug Delivery. Pharmaceutics, 2019, 11, 634.	4.5	5
41	Is there variability in drug release and physical characteristics of amiodarone chloride from different commercially available tablets? Possible therapeutic implications. International Journal of Pharmacy Practice, 2010, 18, 245-248.	0.6	3
42	Porous Silicon - A Nanostructured Delivery System. , 2006, , .		2
43	Development of a Multi-Compartmental Oral Vaccine Delivery System. Drug Delivery Letters, 2016, 6, 57-62.	0.5	1
44	Dendrimer Assembly in Solution and at Interfaces. , 2006, , .		0
45	Nanoporous silicon to enhance drug solubility. , 2014, , 356-373.		0