Haibin Ling

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11332442/haibin-ling-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34 4,472 19 36 g-index

36 5,774 6.2 avg, IF L-index

#	Paper	IF	Citations
34	Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 1-1	8.1	3
33	2021,		8
32	Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing Images. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2021 , 1-1	8.1	9
31	Dynamical Hyperparameter Optimization via Deep Reinforcement Learning in Tracking. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , 43, 1515-1529	13.3	55
30	. IEEE Transactions on Multimedia, 2021 , 1-1	6.6	2
29	TracKlinic: Diagnosis of Challenge Factors in Visual Tracking 2021 ,		3
28	Planar object tracking benchmark in the wild. <i>Neurocomputing</i> , 2021 , 454, 254-267	5.4	1
27	The Eighth Visual Object Tracking VOT2020 Challenge Results. <i>Lecture Notes in Computer Science</i> , 2020 , 547-601	0.9	19
26	Tracking-by-Fusion via Gaussian Process Regression Extended to Transfer Learning. <i>IEEE</i> Transactions on Pattern Analysis and Machine Intelligence, 2020 , 42, 939-955	13.3	8
25	M2Det: A Single-Shot Object Detector Based on Multi-Level Feature Pyramid Network. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2019 , 33, 9259-9266	5	236
24	Parallel Tracking and Verifying. IEEE Transactions on Image Processing, 2019,	8.7	18
23	The Sixth Visual Object Tracking VOT2018 Challenge Results. <i>Lecture Notes in Computer Science</i> , 2019 , 3-53	0.9	67
22	VisDrone-VID2019: The Vision Meets Drone Object Detection in Video Challenge Results 2019 ,		18
21	Online single target tracking in WAMI: benchmark and evaluation. <i>Multimedia Tools and Applications</i> , 2018 , 77, 10939-10960	2.5	4
20	Salient Object Detection via Structured Matrix Decomposition. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2017 , 39, 818-832	13.3	211
19	LIME: Low-Light Image Enhancement via Illumination Map Estimation. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 982-993	8.7	578
18	Human activity prediction using temporally-weighted generalized time warping. <i>Neurocomputing</i> , 2017 , 225, 139-147	5.4	18

LIST OF PUBLICATIONS

17	2017,		188	
16	2017,		8	
15	DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 3919-30	8.7	336	
14	Encoding color information for visual tracking: Algorithms and benchmark. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 5630-44	8.7	412	
13	Angular pattern and binary angular pattern for shape retrieval. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 1118-27	8.7	35	
12	Transfer Learning Based Visual Tracking with Gaussian Processes Regression. <i>Lecture Notes in Computer Science</i> , 2014 , 188-203	0.9	176	
11	Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms 2013 ,		47	
10	Multiscale distance matrix for fast plant leaf recognition. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 4667-72	8.7	131	
9	Robust visual tracking and vehicle classification via sparse representation. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2011 , 33, 2259-72	13.3	655	
8	Balancing Deformability and Discriminability for Shape Matching. <i>Lecture Notes in Computer Science</i> , 2010 , 411-424	0.9	45	
7	Searching the World Herbaria: A System for Visual Identification of Plant Species. <i>Lecture Notes in Computer Science</i> , 2008 , 116-129	0.9	62	
6	An efficient Earth Mover's Distance algorithm for robust histogram comparison. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2007 , 29, 840-53	13.3	243	
5	Shape classification using the inner-distance. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2007 , 29, 286-99	13.3	763	
4	First steps toward an electronic field guide for plants. <i>Taxon</i> , 2006 , 55, 597-610	0.8	60	
3	Deformation invariant image matching 2005 ,		22	
2	Using the inner-distance for classification of articulated shapes		14	
1	Diffusion Distance for Histogram Comparison		16	