
## Xiaoli Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11331260/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | cRGD enables rapid phagocytosis of liposomal vancomycin for intracellular bacterial clearance.<br>Journal of Controlled Release, 2022, 344, 202-213.                      | 4.8  | 11        |
| 2  | Autologous Skin Fibroblastâ€Based PLGA Nanoparticles for Treating Multiorgan Fibrosis. Advanced<br>Science, 2022, 9, .                                                    | 5.6  | 8         |
| 3  | Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. Journal of Controlled Release, 2021, 330, 493-501.                    | 4.8  | 24        |
| 4  | Deciphering Protein Corona by scFv-Based Affinity Chromatography. Nano Letters, 2021, 21, 2124-2131.                                                                      | 4.5  | 28        |
| 5  | Editorial: Functional Nanomaterials for Cancer Diagnostics and Therapy. Frontiers in Chemistry, 2021, 9, 670410.                                                          | 1.8  | 1         |
| 6  | A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science, 2021, 8, 2100389.                                                           | 5.6  | 23        |
| 7  | Natural IgM dominates in vivo performance of liposomes. Journal of Controlled Release, 2020, 319, 371-381.                                                                | 4.8  | 30        |
| 8  | Multicompartment Tubular Micromotors Toward Enhanced Localized Active Delivery. Advanced<br>Materials, 2020, 32, e2000091.                                                | 11.1 | 80        |
| 9  | Engineered Cellâ€Membraneâ€Coated Nanoparticles Directly Present Tumor Antigens to Promote<br>Anticancer Immunity. Advanced Materials, 2020, 32, e2001808.                | 11.1 | 206       |
| 10 | Inhibition of Pathogen Adhesion by Bacterial Outer Membrane oated Nanoparticles. Angewandte<br>Chemie - International Edition, 2019, 58, 11404-11408.                     | 7.2  | 114       |
| 11 | Inhibition of Pathogen Adhesion by Bacterial Outer Membrane oated Nanoparticles. Angewandte<br>Chemie, 2019, 131, 11526-11530.                                            | 1.6  | 4         |
| 12 | Multiantigenic Nanotoxoids for Antivirulence Vaccination against Antibiotic-Resistant Gram-Negative<br>Bacteria. Nano Letters, 2019, 19, 4760-4769.                       | 4.5  | 63        |
| 13 | Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Letters, 2019, 19, 1914-1921.                                                        | 4.5  | 152       |
| 14 | Group A Streptococcal S Protein Utilizes Red Blood Cells as Immune Camouflage and Is a Critical<br>Determinant for Immune Evasion. Cell Reports, 2019, 29, 2979-2989.e15. | 2.9  | 16        |
| 15 | Remoteâ€Loaded Platelet Vesicles for Diseaseâ€Targeted Delivery of Therapeutics. Advanced Functional<br>Materials, 2018, 28, 1801032.                                     | 7.8  | 64        |
| 16 | A d-Peptide Ligand of Integrins for Simultaneously Targeting Angiogenic Blood Vasculature and<br>Glioma Cells. Molecular Pharmaceutics, 2018, 15, 592-601.                | 2.3  | 14        |
| 17 | Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018, 12, 109-116.           | 7.3  | 222       |
| 18 | T ellâ€Mimicking Nanoparticles Can Neutralize HIV Infectivity. Advanced Materials, 2018, 30, e1802233.                                                                    | 11.1 | 149       |

XIAOLI WEI

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Induction of apoptosis by FFJ-5, a novel naphthoquinone compound, occurs via downregulation of PKM2 in A549 and HepG2 cells. Oncology Letters, 2017, 13, 791-799.                                         | 0.8  | 4         |
| 20 | Erythrocyte–Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization.<br>Advanced Materials, 2017, 29, 1606209.                                                                       | 11.1 | 507       |
| 21 | Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. Journal of Controlled Release, 2017, 255, 132-141.                                          | 4.8  | 74        |
| 22 | FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the<br>mitochondrial apoptosis signaling pathway in human cancer cells. Oncology Letters, 2017, 13,<br>2607-2614. | 0.8  | 15        |
| 23 | Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity.<br>Advanced Materials, 2017, 29, 1703969.                                                                     | 11.1 | 392       |
| 24 | A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. Journal of Controlled Release, 2017, 264, 102-111.              | 4.8  | 168       |
| 25 | Remote Loading of Smallâ€Molecule Therapeutics into Cholesterolâ€Enriched Cellâ€Membraneâ€Derived<br>Vesicles. Angewandte Chemie - International Edition, 2017, 56, 14075-14079.                          | 7.2  | 86        |
| 26 | Biomimetic Virulomics for Capture and Identification of Cell-Type Specific Effector Proteins. ACS<br>Nano, 2017, 11, 11831-11838.                                                                         | 7.3  | 27        |
| 27 | In Situ Capture of Bacterial Toxins for Antivirulence Vaccination. Advanced Materials, 2017, 29, 1701644.                                                                                                 | 11.1 | 94        |
| 28 | Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment. Oncotarget,<br>2017, 8, 66889-66900.                                                                               | 0.8  | 69        |
| 29 | Dâ€Peptides as Recognition Molecules and Therapeutic Agents. Chemical Record, 2016, 16, 1772-1786.                                                                                                        | 2.9  | 48        |
| 30 | Stabilized Heptapeptide A7R for Enhanced Multifunctional Liposome-Based Tumor-Targeted Drug<br>Delivery. ACS Applied Materials & Interfaces, 2016, 8, 13232-13241.                                        | 4.0  | 58        |
| 31 | A stabilized peptide ligand for multifunctional glioma targeted drug delivery. Journal of Controlled<br>Release, 2016, 243, 86-98.                                                                        | 4.8  | 36        |
| 32 | Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials, 2016, 111, 116-123.                                               | 5.7  | 151       |
| 33 | Liposome-Based Systemic Glioma-Targeted Drug Delivery Enabled by All- <scp>d</scp> Peptides. ACS<br>Applied Materials & Interfaces, 2016, 8, 29977-29985.                                                 | 4.0  | 72        |
| 34 | RGD-modified lipid disks as drug carriers for tumor targeted drug delivery. Nanoscale, 2016, 8,<br>7209-7216.                                                                                             | 2.8  | 54        |
| 35 | A <scp>D</scp> â€Peptide Ligand of Nicotine Acetylcholine Receptors for Brainâ€Targeted Drug Delivery.<br>Angewandte Chemie, 2015, 127, 3066-3070.                                                        | 1.6  | 14        |
| 36 | A <scp>D</scp> â€Peptide Ligand of Nicotine Acetylcholine Receptors for Brainâ€Targeted Drug Delivery.<br>Angewandte Chemie - International Edition, 2015, 54, 3023-3027.                                 | 7.2  | 141       |

XIAOLI WEI

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rücktitelbild: AD-Peptide Ligand of Nicotine Acetylcholine Receptors for Brain-Targeted Drug Delivery<br>(Angew. Chem. 10/2015). Angewandte Chemie, 2015, 127, 3194-3194.     | 1.6 | 0         |
| 38 | D-SP5 Peptide-Modified Highly Branched Polyethylenimine for Gene Therapy of Gastric<br>Adenocarcinoma. Bioconjugate Chemistry, 2015, 26, 1494-1503.                           | 1.8 | 20        |
| 39 | Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Advanced<br>Drug Delivery Reviews, 2015, 90, 101-118.                                  | 6.6 | 45        |
| 40 | Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. Journal of Controlled<br>Release, 2015, 218, 13-21.                                           | 4.8 | 113       |
| 41 | Retro-inverso bradykinin opens the door of blood–brain tumor barrier for nanocarriers in glioma<br>treatment. Cancer Letters, 2015, 369, 144-151.                             | 3.2 | 27        |
| 42 | Brain tumor-targeted drug delivery strategies. Acta Pharmaceutica Sinica B, 2014, 4, 193-201.                                                                                 | 5.7 | 165       |
| 43 | Tumor-Penetrating Peptide Mediation: An Effective Strategy for Improving the Transport of Liposomes in Tumor Tissue. Molecular Pharmaceutics, 2014, 11, 218-225.              | 2.3 | 33        |
| 44 | Retro-Inverso Isomer of Angiopep-2: A Stable <scp>d</scp> -Peptide Ligand Inspires Brain-Targeted Drug<br>Delivery. Molecular Pharmaceutics, 2014, 11, 3261-3268.             | 2.3 | 93        |
| 45 | Glutathioneâ€sensitive RGDâ€poly(ethylene glycol)â€5Sâ€polyethylenimine for intracranial glioblastoma<br>targeted gene delivery. Journal of Gene Medicine, 2013, 15, 291-305. | 1.4 | 34        |
| 46 | p-Hydroxybenzoic acid (p-HA) modified polymeric micelles for brain-targeted docetaxel delivery.<br>Science Bulletin, 2013, 58, 2651-2656.                                     | 1.7 | 7         |
| 47 | Tumor-penetrating peptide functionalization enhances the anti-glioblastoma effect of doxorubicin<br>liposomes. Nanotechnology, 2013, 24, 405101.                              | 1.3 | 57        |
| 48 | Targeted delivery of a novel palmitylated D-peptide for antiglioblastoma molecular therapy. Journal of<br>Drug Targeting, 2012, 20, 264-271.                                  | 2.1 | 17        |
| 49 | An Ultrahigh Affinity <scp>d</scp> -Peptide Antagonist Of MDM2. Journal of Medicinal Chemistry, 2012, 55, 6237-6241.                                                          | 2.9 | 71        |
| 50 | LyP-1-conjugated PEGylated liposomes: A carrier system for targeted therapy of lymphatic metastatic tumor. Journal of Controlled Release, 2012, 157, 118-125.                 | 4.8 | 132       |
| 51 | Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo.<br>Journal of Controlled Release, 2012, 160, 630-636.                     | 4.8 | 102       |
| 52 | Micelleâ€Based Brainâ€Targeted Drug Delivery Enabled by a Nicotine Acetylcholine Receptor Ligand.<br>Angewandte Chemie - International Edition, 2011, 50, 5482-5485.          | 7.2 | 124       |