List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1133120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanochemistry Can Reduce Life Cycle Environmental Impacts of Manufacturing Active Pharmaceutical Ingredients. ACS Sustainable Chemistry and Engineering, 2022, 10, 1430-1439.	3.2	54
2	Appealing Renewable Materials in Green Chemistry. Molecules, 2022, 27, 1988.	1.7	11
3	Mechanochemical Fischer indolisation: an eco-friendly design for a timeless reaction. Green Chemistry, 2022, 24, 4859-4869.	4.6	13
4	Surface-modified nanoerythrosomes for potential optical imaging diagnostics. Journal of Colloid and Interface Science, 2021, 582, 246-253.	5.0	6
5	Kinetics of MgH2 formation by ball milling. International Journal of Hydrogen Energy, 2021, 46, 967-973.	3.8	13
6	Coupling of mechanical deformation and reaction in mechanochemical transformations. Physical Chemistry Chemical Physics, 2021, 23, 229-245.	1.3	15
7	Solventâ€free Reactions for the Synthesis of Indolenineâ€based Squaraines and Croconaines: Comparison of Thermal Heating, Mechanochemical Milling, and IR Irradiation. ChemSusChem, 2021, 14, 1363-1369.	3.6	16
8	From solution-based nonconventional activation methods to mechanochemical procedures: The hydantoin case. , 2021, , 421-452.		0
9	The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114.	3.2	35
10	Mechanochemical Ignition of Self-propagating Reactions in Zn-S Powder Mixtures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 830-839.	1.0	1
11	Mechanochemical Rearrangements. Journal of Organic Chemistry, 2021, 86, 13885-13894.	1.7	57
12	Adsorption and Release of Sulfamethizole from Mesoporous Silica Nanoparticles Functionalised with Triethylenetetramine. International Journal of Molecular Sciences, 2021, 22, 7665.	1.8	9
13	A phenomenological kinetic equation for mechanochemical reactions involving highly deformable molecular solids. Physical Chemistry Chemical Physics, 2021, 23, 14178-14194.	1.3	9
14	Mechanochemical Preparation of Protein:Hydantoin Hybrids and their Release Properties. ChemSusChem, 2021, , .	3.6	5
15	Visible-Light Photoredox-Catalyzed Amidation of Benzylic Alcohols. Journal of Organic Chemistry, 2020, 85, 11679-11687.	1.7	19
16	Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chemical Communications, 2020, 56, 11066-11069.	2.2	32
17	Solvent-Free, Continuous Synthesis of Hydrazone-Based Active Pharmaceutical Ingredients by Twin-Screw Extrusion. ACS Sustainable Chemistry and Engineering, 2020, 8, 12230-12238.	3.2	71
18	Kabachnik–Fields Reaction by Mechanochemistry: New Horizons from Old Methods. ACS Sustainable Chemistry and Engineering, 2020, 8, 18889-18902.	3.2	18

#	Article	IF	CITATIONS
19	1 Mechanochemistry: an overview and a historical account. , 2020, , 1-8.		1
20	Mechanochemical Preparation of Active Pharmaceutical Ingredients Monitored by <i>In Situ</i> Raman Spectroscopy. ACS Omega, 2020, 5, 28663-28672.	1.6	38
21	Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis, 2020, 10, 8344-8394.	5.5	188
22	Kinetics of mechanochemical transformations. Physical Chemistry Chemical Physics, 2020, 22, 14489-14502.	1.3	39
23	Microscopic kinetic information from Ag oxalate mechanochemistry in ball drop experiments. Materials Letters, 2020, 267, 127525.	1.3	5
24	Metal-free mechanochemical oxidations in Ertalyte [®] jars. Beilstein Journal of Organic Chemistry, 2019, 15, 1786-1794.	1.3	16
25	Visible light-induced transformation of aldehydes to esters, carboxylic anhydrides and amides. New Journal of Chemistry, 2019, 43, 10711-10715.	1.4	25
26	Trichloroisocyanuric Acid: a Versatile and Efficient Chlorinating and Oxidizing Reagent. European Journal of Organic Chemistry, 2019, 2019, 3544-3552.	1.2	50
27	Baseâ€Mediated Transitionâ€Metalâ€Free Dehydrative Câ^'C and Câ^'N Bondâ€Forming Reactions from Alcohols. Chemical Record, 2019, 19, 2398-2435.	2.9	24
28	From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. Reaction Chemistry and Engineering, 2019, 4, 1179-1188.	1.9	81
29	Ball-milling and cheap reagents breathe green life into the one hundred-year-old Hofmann reaction. Organic Chemistry Frontiers, 2018, 5, 531-538.	2.3	17
30	High throughput mechanochemistry: application to parallel synthesis of benzoxazines. Chemical Communications, 2018, 54, 551-554.	2.2	30
31	Processing and Investigation Methods in Mechanochemical Kinetics. ACS Omega, 2018, 3, 9196-9209.	1.6	70
32	Metalâ€Free Preparation of αâ€Hâ€Chlorinated Alkylaromatic Hydrocarbons by Sunlight. ChemistrySelect, 2018, 3, 7991-7995.	0.7	18
33	Mechanochemistry for "no solvent, no base―preparation of hydantoin-based active pharmaceutical ingredients: nitrofurantoin and dantrolene. Green Chemistry, 2018, 20, 2973-2977.	4.6	78
34	Metal-free oxidative self-coupling of aldehydes or alcohols to symmetric carboxylic anhydrides. Tetrahedron Letters, 2017, 58, 2533-2536.	0.7	5
35	Vibrational and optical characterization of s-triazine derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 183, 348-355.	2.0	18
36	A Mechanochemicalâ€Assisted Oxidation of Amines to Carbonyl Compounds and Nitriles. European Journal of Organic Chemistry, 2017, 2017, 5519-5526.	1.2	23

#	Article	IF	CITATIONS
37	Front Cover: A Mechanochemical-Assisted Oxidation of Amines to Carbonyl Compounds and Nitriles (Eur. J. Org. Chem. 37/2017). European Journal of Organic Chemistry, 2017, 2017, 5421-5421.	1.2	0
38	Anhydrides from aldehydes or alcohols via oxidative cross-coupling. New Journal of Chemistry, 2017, 41, 931-939.	1.4	14
39	Synthesis of Quinolines <i>via</i> a Metal atalyzed Dehydrogenative <i>N</i> â€Heterocyclization. Chemical Record, 2017, 17, 200-216.	2.9	40
40	Synthesis of Nitric Oxide Donors Derived from Piloty's Acid and Study of Their Effects on Dopamine Secretion from PC12 Cells. Pharmaceuticals, 2017, 10, 74.	1.7	5
41	Mechanically induced oxidation of alcohols to aldehydes and ketones in ambient air: Revisiting TEMPO-assisted oxidations. Beilstein Journal of Organic Chemistry, 2017, 13, 2049-2055.	1.3	24
42	Influence of the milling parameters on the nucleophilic substitution reaction of activated β-cyclodextrins. Beilstein Journal of Organic Chemistry, 2017, 13, 1893-1899.	1.3	11
43	Recent developments in oxidative esterification and amidation of aldehydes. Tetrahedron Letters, 2016, 57, 3433-3440.	0.7	42
44	A telescopic one-pot synthesis of β-lactam rings using amines as a convenient source of imines. RSC Advances, 2016, 6, 38553-38557.	1.7	13
45	Metalâ€Free Oxidative Cross Esterification of Alcohols <i>via</i> Acyl Chloride Formation. Advanced Synthesis and Catalysis, 2016, 358, 154-158.	2.1	32
46	An Environmentally Sustainable Mechanochemical Route to Hydroxamic Acid Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 3135-3144.	2.1	25
47	A Mild and Efficient Synthesis of Substituted Quinolines <i>via</i> a Crossâ€Dehydrogenative Coupling of (Bio)available Alcohols and Aminoarenes. Advanced Synthesis and Catalysis, 2015, 357, 576-582.	2.1	16
48	A Metalâ€Catalyzed Tandem 1,4â€Benzodiazepine Synthesis Based on Two Hydrogenâ€Transfer Reactions. European Journal of Organic Chemistry, 2015, 2015, 1068-1074.	1.2	29
49	Metal-Free Direct Oxidation of Aldehydes to Esters Using TCCA. Organic Letters, 2015, 17, 3666-3669.	2.4	59
50	A two-step tandem reaction to prepare hydroxamic acids directly from alcohols. Organic and Biomolecular Chemistry, 2014, 12, 4582.	1.5	10
51	Synthesis of α,β-Unsaturated Aldehydes Based on a One-Pot Phase-Switch Dehydrogenative Cross-Coupling of Primary Alcohols. Organic Letters, 2014, 16, 2586-2589.	2.4	38
52	"Quick and click―assembly of functionalised indole rings via metal-promoted cyclative tandem reactions. RSC Advances, 2014, 4, 59297-59301.	1.7	6
53	Oneâ€Pot Synthesis of Hydroxamic Acids from Aldehydes and Hydroxylamine. Advanced Synthesis and Catalysis, 2014, 356, 2709-2713.	2.1	16
54	Palladium atalysed Dehydrogenative Generation of Imines from Amines. A Natureâ€Inspired Route to Indoles <i>via</i> Cross ouplings of Amines with Arylhydrazines. Advanced Synthesis and Catalysis, 2013, 355, 3002-3013.	2.1	19

#	Article	IF	CITATIONS
55	A copper-catalysed amidation of aldehydes via N-hydroxysuccinimide ester formation. Organic and Biomolecular Chemistry, 2013, 11, 8241.	1.5	28
56	Iron-catalysed oxidative amidation of alcohols with amines. Organic and Biomolecular Chemistry, 2013, 11, 3803.	1.5	72
57	Use of Primary Amines for the Selective N-Alkylation of Anilines by a Reusable Heterogeneous Catalyst. Synlett, 2013, 24, 2249-2254.	1.0	12
58	New Pentamidine Analogues in Medicinal Chemistry. Current Medicinal Chemistry, 2012, 19, 5819-5836.	1.2	13
59	Ironâ€Catalyzed Amidation of Aldehydes with <i>N</i> â€Chloroamines. Advanced Synthesis and Catalysis, 2012, 354, 2949-2953.	2.1	46
60	Formic Acid: A Promising Bioâ€Renewable Feedstock for Fine Chemicals. Advanced Synthesis and Catalysis, 2012, 354, 3180-3186.	2.1	84
61	A Ceneral Approach to Substituted Benzimidazoles and Benzoxazoles <i>via</i> Heterogeneous Palladium atalyzed Hydrogenâ€Transfer with Primary Amines. Advanced Synthesis and Catalysis, 2012, 354, 2453-2464.	2.1	41
62	From Alcohols to Indoles: A Tandem Ru Catalyzed Hydrogen-Transfer Fischer Indole Synthesis. Organic Letters, 2012, 14, 6112-6115.	2.4	75
63	One-Pot Synthesis of Amides from Aldehydes and Amines <i>via</i> C–H Bond Activation. Organic Letters, 2012, 14, 5014-5017.	2.4	106
64	A fast and efficient one-pot microwave assisted synthesis of variously di-substituted 1,2,4-oxadiazoles. Organic and Biomolecular Chemistry, 2011, 9, 7539.	1.5	22
65	Microwaveâ€Assisted Synthesis of Polysubstituted Benzimidazoles by Heterogeneous Pdâ€Catalyzed Oxidative C–H Activation of Tertiary Amines. European Journal of Organic Chemistry, 2011, 2011, 5791-5795.	1.2	35
66	Microwaveâ€Promoted Selective Monoâ€Nâ€Alkylation of Anilines with Tertiary Amines by Heterogeneous Catalysis. Chemistry - A European Journal, 2011, 17, 82-85.	1.7	42
67	Microwave-Assisted Synthesis of N-Monosubstituted Urea Derivatives. Synlett, 2010, 2010, 2439-2442.	1.0	17
68	Some Recent Approaches to the Synthesis of 2-Substituted Benzofurans. Current Medicinal Chemistry, 2009, 16, 1-20.	1.2	108
69	A Straightforward Route to Piloty's Acid Derivatives: A Class of Potential Nitroxyl-Generating Prodrugs. Synlett, 2009, 2009, 2149-2153.	1.0	26
70	A Mild and Inexpensive Procedure for the Synthesis of N,N′-Di-Boc-Protected Guanidines. Synlett, 2009, 2009, 3368-3372.	1.0	17
71	Parallel Synthesis of Trisubstituted Formamidines: A Facile and Versatile Procedure. ACS Combinatorial Science, 2009, 11, 126-130.	3.3	19
72	A Practical and Efficient Approach to PNA Monomers Compatible with Fmocâ€Mediated Solidâ€Phase Synthesis Protocols. European Journal of Organic Chemistry, 2008, 2008, 5786-5797.	1.2	52

#	Article	IF	CITATIONS
73	1,3,5-Triazines. , 2008, , 197-290.		13
74	Angeliâ^'Rimini's Reaction on Solid Support:Â A New Approach to Hydroxamic Acids. Journal of Organic Chemistry, 2006, 71, 7057-7059.	1.7	45
75	A New Polymer-Supported Reagent for the Synthesis of ?-Lactams in Solution ChemInform, 2005, 36, no.	0.1	0
76	1,3,5-Triazine: A Versatile Heterocycle in Current Applications of Organic Chemistry. ChemInform, 2005, 36, no.	0.1	0
77	Microwave-Assisted Synthesis of Isonitriles: A General Simple Methodology ChemInform, 2005, 36, no.	0.1	ο
78	Peptide Nucleic Acids (PNAs), A Chemical Overview. Current Medicinal Chemistry, 2005, 12, 2561-2599.	1.2	75
79	Synthesis of 1-Alkyl-4-imidazolecarboxylates:Â A Catch and Release Strategy. ACS Combinatorial Science, 2005, 7, 905-908.	3.3	23
80	Microwave-Assisted Synthesis of Isonitriles:Â A General Simple Methodology. Journal of Organic Chemistry, 2005, 70, 2361-2363.	1.7	78
81	[1,3,5]-Triazine: A Versatile Heterocycle in Current Applications of Organic Chemistry. Current Organic Chemistry, 2004, 8, 1497-1519.	0.9	99
82	A Mild Procedure for the Preparation of 3-Aryl-4-formylpyrazoles. Synlett, 2004, 2004, 2299-2302.	1.0	8
83	A New, Simple Procedure for the Synthesis of Formyl Amides. Synlett, 2004, 2004, 2570-2572.	1.0	9
84	Colorimetric Tools for Solid-Phase Organic Synthesis. ACS Combinatorial Science, 2004, 6, 805-810.	3.3	58
85	Colorimetric Tools for Solid-Phase Organic Synthesis. ChemInform, 2004, 35, no.	0.1	0
86	A "Catch and Release―Strategy for the Parallel Synthesis of 2,4,5-Trisubstituted Pyrimidines. ACS Combinatorial Science, 2004, 6, 105-111.	3.3	38
87	A New Polymer-Supported Reagent for the Synthesis of Î ² -Lactams in Solution. Journal of Organic Chemistry, 2004, 69, 9316-9318.	1.7	37
88	New Cellulose-Supported Reagent:  A Sustainable Approach to Guanidines. Organic Letters, 2004, 6, 4925-4927.	2.4	25
89	Microwave-Assisted Solution-Phase Synthesis of 1,4,5-Trisubstituted Pyrazoles. European Journal of Organic Chemistry, 2003, 2003, 537-541.	1.2	38
90	A New, Rapid, General Procedure for the Synthesis of Organic Molecules Supported on Methoxy-Polyethylene Glycol (MeOPEG) under Microwave Irradiation Conditions. European Journal of Organic Chemistry, 2003, 2003, 907-912.	1.2	17

#	Article	IF	CITATIONS
91	Mild and Highly Selective Formyl Protection of Primary Hydroxyl Groups ChemInform, 2003, 34, no.	0.1	0
92	Beckmann Rearrangement of Oximes under Very Mild Conditions ChemInform, 2003, 34, no.	0.1	0
93	Microwave-Assisted Solution-Phase Synthesis of 1,4,5-Trisubstituted Pyrazoles ChemInform, 2003, 34, no.	0.1	Ο
94	Trichloroisocyanuric Acid/TEMPO Oxidation of Alcohols under Mild Conditions: A Close Investigation ChemInform, 2003, 34, no.	0.1	0
95	A Method for Generating Nitrile Oxides from Nitroalkanes: A Microwave Assisted Route for Isoxazoles ChemInform, 2003, 34, no.	0.1	0
96	A method for generating nitrile oxides from nitroalkanes: a microwave assisted route for isoxazoles. Tetrahedron, 2003, 59, 5437-5440.	1.0	52
97	Preparation of pyrazole and isoxazole libraries on cellulose beads: a new cheap and versatile biopolymer. Comptes Rendus Chimie, 2003, 6, 607-611.	0.2	8
98	Trichloroisocyanuric/TEMPO Oxidation of Alcohols under Mild Conditions:Â A Close Investigation. Journal of Organic Chemistry, 2003, 68, 4999-5001.	1.7	137
99	Simple One-Flask Method for the Preparation of Hydroxamic Acids. Organic Letters, 2003, 5, 2715-2717.	2.4	83
100	Cellulose Beads:  a New Versatile Solid Support for Microwave- Assisted Synthesis. Preparation of Pyrazole and Isoxazole Libraries. ACS Combinatorial Science, 2003, 5, 465-471.	3.3	70
101	Beckmann Rearrangement of Oximes under Very Mild Conditions. Journal of Organic Chemistry, 2002, 67, 6272-6274.	1.7	228
102	Mild and Highly Selective Formyl Protection of Primary Hydroxyl Groups. Journal of Organic Chemistry, 2002, 67, 5152-5155.	1.7	44
103	An Efficient Route to Alkyl Chlorides from Alcohols Using the Complex TCT/DMF. Organic Letters, 2002, 4, 553-555.	2.4	119
104	A Mild and Efficient Alternative to the Classical Swern Oxidation. Journal of Organic Chemistry, 2001, 66, 7907-7909.	1.7	99
105	A Very Mild and Chemoselective Oxidation of Alcohols to Carbonyl Compounds. Organic Letters, 2001, 3, 3041-3043.	2.4	213
106	A Simple Preparation of Ketones.N-Protected α-Amino Ketones from α-Amino Acids. Organic Letters, 2001, 3, 1519-1521.	2.4	61
107	Small Ring Constrained Peptidomimetics. Synthesis of Epoxy Peptidomimetics, Inhibitors of Cysteine Proteases. Journal of Organic Chemistry, 2001, 66, 697-706.	1.7	26
108	Solution-Phase Synthesis of Mixed Amide Libraries by Simultaneous Addition of Functionalities (SPSAF) to a Diketopiperazine Tetracarboxylic Acid Scaffold Monitored by GC Analysis of Isobutyl Alcohol. European Journal of Organic Chemistry, 2000, 2000, 1669-1675.	1.2	12

#	Article	IF	CITATIONS
109	New Oxazole-Based Conformationally Restricted Peptidomimetics: Design and Synthesis of Pseudopeptides. European Journal of Organic Chemistry, 2000, 2000, 3217-3222.	1.2	30
110	Synthesis of Optically Active α-Amino Acids Containing Pyrazolyl Ring as Substituent. Synthesis, 2000, 2000, 1295-1298.	1.2	12
111	4-(4,6-Dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium Chloride (DMTMM): A Valuable Alternative to PyBOP for Solid Phase Peptide Synthesis. Synlett, 2000, 2000, 275-277.	1.0	73
112	Mild reduction of carboxylic acids to alcohols using cyanuric chloride and sodium borohydride. Tetrahedron Letters, 1999, 40, 4395-4396.	0.7	94
113	New pyrazole containing bicarboxylic α-amino acids: mimics of the cis amide bond. Tetrahedron Letters, 1999, 40, 8701-8704.	0.7	19
114	A Simple Method for the Reduction of Carboxylic Acids to Aldehydes or Alcohols Using H2and Pd/C. Journal of Organic Chemistry, 1999, 64, 8962-8964.	1.7	61
115	New 1,3,5-triazine derivatives as templates for the homogeneous phase synthesis of chemical libraries. Tetrahedron Letters, 1998, 39, 7607-7610.	0.7	18
116	General approach to the synthesis of optically active 2-carboxy-4-[′3-(diethoxyphosphinyl)propyl]-5-alkylperazines (CCP analogues). Tetrahedron: Asymmetry, 1997, 8, 1633-1639.	1.8	12
117	Synthesis of (2R, 5S)- and (2S, 5S)-2-carboxy-1,4-diaza-[4.3.0]bicyclononane as building blocks for the synthesis of new potential HIV protease inhibitors. Tetrahedron: Asymmetry, 1996, 7, 1999-2005.	1.8	12
118	From Lossen Transposition to Solventless "Medicinal Mechanochemistry― ACS Sustainable Chemistry and Engineering, 0, , .	3.2	12
119	A trustworthy mechanochemical route to isocyanides. Beilstein Journal of Organic Chemistry, 0, 18, 732-737.	1.3	5