
Rolf Verleger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1132977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	No effect of target probability on P3b amplitudes. International Journal of Psychophysiology, 2020, 153, 107-115.	1.0	3
2	Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b. Psychophysiology, 2020, 57, e13542.	2.4	116
3	Left-Hemisphere Delay of EEG Potentials Evoked by Standard Letter Stimuli During Rapid Serial Visual Presentation: Indicating Right-Hemisphere Advantage or Left-Hemisphere Load?. Frontiers in Psychology, 2019, 10, 171.	2.1	2
4	Get Set or Get Distracted? Disentangling Content-Priming and Attention-Catching Effects of Background Lure Stimuli on Identifying Targets in Two Simultaneously Presented Series. Brain Sciences, 2019, 9, 365.	2.3	1
5	The oddball effect on P3 disappears when feature relevance or feature-response mappings are unknown. Experimental Brain Research, 2018, 236, 2781-2796.	1.5	8
6	Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder. European Archives of Psychiatry and Clinical Neuroscience, 2017, 267, 225-235.	3.2	17
7	Leftward bias in orienting to and disengaging attention from salient task-irrelevant events in rapid serial visual presentation. Neuropsychologia, 2017, 94, 96-105.	1.6	11
8	A right hemisphere advantage at early cortical stages of processing alphanumeric stimuli. Evidence from electrophysiology. Brain and Cognition, 2017, 113, 40-55.	1.8	10
9	How handedness influences perceptual and attentional processes during rapid serial visual presentation. Neuropsychologia, 2017, 100, 155-163.	1.6	9
10	Effects on P3 of spreading targets and response prompts apart. Biological Psychology, 2017, 126, 1-11.	2.2	24
11	Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations. Sleep, 2017, 40, .	1.1	24
12	Lateralization of spatial rather than temporal attention underlies the left hemifield advantage in rapid serial visual presentation. Brain and Cognition, 2017, 118, 54-62.	1.8	9
13	Dynamic coupling between slow waves and sleep spindles during slow wave sleep in humans is modulated by functional pre-sleep activation. Scientific Reports, 2017, 7, 14496.	3.3	31
14	Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. NeuroImage, 2017, 146, 341-354.	4.2	26
15	Rebalancing Spatial Attention: Endogenous Orienting May Partially Overcome the Left Visual Field Bias in Rapid Serial Visual Presentation. Journal of Cognitive Neuroscience, 2017, 29, 1-13.	2.3	29
16	On Why Targets Evoke P3 Components in Prediction Tasks: Drawing an Analogy between Prediction and Matching Tasks. Frontiers in Human Neuroscience, 2017, 11, 497.	2.0	10
17	Time to Move Again: Does the Bereitschaftspotential Covary with Demands on Internal Timing?. Frontiers in Human Neuroscience, 2016, 10, 642.	2.0	21
18	Go and no-go P3 with rare and frequent stimuli in oddball tasks: A study comparing key-pressing with counting. International Journal of Psychophysiology, 2016, 110, 128-136.	1.0	20

#	Article	IF	CITATIONS
19	ls P3 a strategic or a tactical component? Relationships of P3 sub-components to response times in oddball tasks with go, no-go and choice responses. NeuroImage, 2016, 143, 223-234.	4.2	49
20	Effects of response delays and of unknown stimulusâ€response mappings on the oddball effect on P3. Psychophysiology, 2016, 53, 1858-1869.	2.4	13
21	Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning. NeuroImage, 2016, 141, 60-70.	4.2	36
22	Do Rare Stimuli Evoke Large P3s by Being Unexpected? A Comparison of Oddball Effects Between Standard-Oddball and Prediction-Oddball Tasks. Advances in Cognitive Psychology, 2016, 12, 88-104.	0.5	44
23	Biased odds for heads or tails: Outcomeâ€evoked P3 depends on frequencies of guesses. Psychophysiology, 2015, 52, 1048-1058.	2.4	8
24	Labile sleep promotes awareness of abstract knowledge in a serial reaction time task. Frontiers in Psychology, 2015, 6, 1354.	2.1	14
25	Is insight a godsend? Explicit knowledge in the serial response-time task has precursors in EEG potentials already at task onset. Neurobiology of Learning and Memory, 2015, 125, 24-35.	1.9	20
26	Bias for the Left Visual Field in Rapid Serial Visual Presentation: Effects of Additional Salient Cues Suggest a Critical Role of Attention. Journal of Cognitive Neuroscience, 2015, 27, 266-279.	2.3	31
27	Testing the S–R link hypothesis of P3b: The oddball effect on S1-evoked P3 gets reduced by increased task relevance of S2. Biological Psychology, 2015, 108, 25-35.	2.2	59
28	Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series. Consciousness and Cognition, 2015, 35, 260-273.	1.5	16
29	The hard oddball: Effects of difficult response selection on stimulusâ€related <scp>P</scp> 3 and on responseâ€related negative potentials. Psychophysiology, 2014, 51, 1089-1100.	2.4	54
30	Deployment and release of interhemispheric inhibition in dual-stream rapid serial visual presentation. Biological Psychology, 2014, 99, 47-59.	2.2	10
31	Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage, 2014, 100, 271-280.	4.2	130
32	Decomposition of 3-way arrays: A comparison of different PARAFAC algorithms. Chemometrics and Intelligent Laboratory Systems, 2014, 137, 97-109.	3.5	5
33	Patients with Parkinson× ³ s disease are less affected than healthy persons by relevant response-unrelated features in visual search. Neuropsychologia, 2014, 62, 38-47.	1.6	5
34	Parafac and go/no-go: Disentangling CNV return from the P3 complex by trilinear component analysis. International Journal of Psychophysiology, 2013, 87, 289-300.	1.0	15
35	The unstable bridge from stimulus processing to correct responding in Parkinson's disease. Neuropsychologia, 2013, 51, 2512-2525.	1.6	27
36	Neurophysiological sensitivity to attentional overload in patients with psychotic disorders. Clinical Neurophysiology, 2013, 124, 881-892.	1.5	24

#	Article	IF	CITATIONS
37	Cooperation or Competition of the Two Hemispheres in Processing Characters Presented at Vertical Midline. PLoS ONE, 2013, 8, e57421.	2.5	21
38	Differences between visual hemifields in identifying rapidly presented target stimuli: letters and digits, faces, and shapes. Frontiers in Psychology, 2013, 4, 452.	2.1	26
39	Insights into sleep's role for insight: Studies with the number reduction task. Advances in Cognitive Psychology, 2013, 9, 160-72.	0.5	22
40	Insights into sleep's role for insight: Studies with the number reduction task. Advances in Cognitive Psychology, 2013, 9, 160-172.	0.5	26
41	Effects of premature lure stimuli on 2ndâ€ŧarget identification in rapid serial visual presentation: Inhibition induced by lures or by 1st target?. Psychophysiology, 2012, 49, 1254-1265.	2.4	11
42	Increased Alpha (8–12 Hz) Activity during Slow Wave Sleep as a Marker for the Transition from Implicit Knowledge to Explicit Insight. Journal of Cognitive Neuroscience, 2012, 24, 119-132.	2.3	72
43	Time-course of hemispheric preference for processing contralateral relevant shapes: P1pc, N1pc, N2pc, N3pc. Advances in Cognitive Psychology, 2012, 8, 19-28.	0.5	14
44	Time-course of hemispheric preference for processing contralateral relevant shapes: P1pc, N1pc, N2pc, N3pc. Advances in Cognitive Psychology, 2012, 8, 19-28.	0.5	25
45	Sleep effects on slow-brain-potential reflections of associative learning. Biological Psychology, 2011, 86, 219-229.	2.2	3
46	Anarchic-hand syndrome: ERP reflections of lost control over the right hemisphere. Brain and Cognition, 2011, 77, 138-150.	1.8	13
47	Mechanisms underlying the left visualâ€field advantage in the dual stream RSVP task: Evidence from N2pc, P3, and distractorâ€evoked VEPs. Psychophysiology, 2011, 48, 1096-1106.	2.4	54
48	Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles. Advances in Cognitive Psychology, 2011, 7, 55-67.	0.5	38
49	The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS. Experimental Brain Research, 2010, 203, 355-365.	1.5	27
50	Responsiveness to distracting stimuli, though increased in Parkinson's disease, is decreased in asymptomatic PINK1 and Parkin mutation carriers. Neuropsychologia, 2010, 48, 467-476.	1.6	21
51	Left visual-field advantage in the dual-stream RSVP task and reading-direction: A study in three nations. Neuropsychologia, 2010, 48, 2852-2860.	1.6	47
52	Popper and P300: Can the view ever be falsified that P3 latency is a specific indicator of stimulus evaluation?. Clinical Neurophysiology, 2010, 121, 1371-1372.	1.5	24
53	Patterns of Implicit Learning Below the Level of Conscious Knowledge. Journal of Psychophysiology, 2010, 24, 91-101.	0.7	3
54	2. Markers of awareness?. Advances in Consciousness Research, 2010, , 37-70.	0.2	3

#	Article	IF	CITATIONS
55	Differential Associations of Early- and Late-Night Sleep with Functional Brain States Promoting Insight to Abstract Task Regularity. PLoS ONE, 2010, 5, e9442.	2.5	24
56	On Why Left Events are the Right Ones: Neural Mechanisms Underlying the Left-hemifield Advantage in Rapid Serial Visual Presentation. Journal of Cognitive Neuroscience, 2009, 21, 474-488.	2.3	63
57	On how the motor cortices resolve an interâ€hemispheric response conflict: an eventâ€related EEG potential â€ guided TMS study of the flankers task. European Journal of Neuroscience, 2009, 30, 318-326.	2.6	56
58	Covert Reorganization of Implicit Task Representations by Slow Wave Sleep. PLoS ONE, 2009, 4, e5675.	2.5	21
59	Selection of features within and without objects: Effects of gestalt appearance and object-based instruction on behavior and event-related brain potentials. Psychophysiology, 2008, 45, 499-510.	2.4	3
60	P3b: Towards some decision about memory. Clinical Neurophysiology, 2008, 119, 968-970.	1.5	68
61	Changes in processing of masked stimuli across early- and late-night sleep: A study on behavior and brain potentials. Brain and Cognition, 2008, 68, 180-192.	1.8	8
62	Shifting from implicit to explicit knowledge: Different roles of early- and late-night sleep. Learning and Memory, 2008, 15, 508-515.	1.3	73
63	Disentangling neural processing of masked and masking stimulus by means of event-related contralateral — ipsilateral differences of EEG potentials. Advances in Cognitive Psychology, 2007, 3, 193-210.	0.5	11
64	Mask- and distractor-triggered inhibitory processes in the priming of motor responses: An EEG study. Psychophysiology, 2007, 45, 070921233045001-???.	2.4	41
65	What determines the direction of subliminal priming. Advances in Cognitive Psychology, 2007, 3, 181-192.	0.5	28
66	On the relation of movement-related potentials to the go/no-go effect on P3. Biological Psychology, 2006, 73, 298-313.	2.2	85
67	A TMS study on non-consciously triggered response tendencies in the motor cortex. Experimental Brain Research, 2006, 173, 115-129.	1.5	13
68	Precursors of Insight in Event-related Brain Potentials. Journal of Cognitive Neuroscience, 2006, 18, 2152-2166.	2.3	45
69	Changes in Connectivity Profiles as a Mechanism for Strategic Control over Interfering Subliminal Information. Cerebral Cortex, 2006, 16, 857-864.	2.9	42
70	An ERP indicator of processing relevant gestalts in masked priming. Psychophysiology, 2005, 42, 677-690.	2.4	23
71	Evidence for an Integrative Role of P3b in Linking Reaction to Perception. Journal of Psychophysiology, 2005, 19, 165-181.	0.7	492
72	Are the DTI results positive evidence for George Bernard Shaw's view?. Behavioral and Brain Sciences, 2004, 27, 866-866.	0.7	0

#	Article	IF	CITATIONS
73	Malfunctions of Central Control of Movement Studied with Slow Brain Potentials in Neurological Patients. Journal of Psychophysiology, 2004, 18, 105-120.	0.7	3
74	Qualitative Differences Between Conscious and Nonconscious Processing? On Inverse Priming Induced by Masked Arrows Journal of Experimental Psychology: General, 2004, 133, 494-515.	2.1	124
75	Sleep inspires insight. Nature, 2004, 427, 352-355.	27.8	884
76	Signs of REM sleep dependent enhancement of implicit face memory: a repetition priming study. Biological Psychology, 2003, 62, 197-210.	2.2	45
77	How the Self Controls Its "Automatic Pilot―when Processing Subliminal Information. Journal of Cognitive Neuroscience, 2003, 15, 911-920.	2.3	90
78	Double dissociation in the effects of brain damage on working memory. Behavioral and Brain Sciences, 2003, 26, 758-759.	0.7	0
79	Traces Left on Visual Selective Attention by Stimuli That Are Not Consciously Identified. Psychological Science, 2002, 13, 48-54.	3.3	126
80	Effects of stimulus-induced saccades on manual response times in healthy elderly and in patients with right-parietal lesions. Experimental Brain Research, 2002, 144, 17-29.	1.5	7
81	Aging and the Simon task. Psychophysiology, 2002, 39, 100-110.	2.4	169
82	Aging and the Simon task. Psychophysiology, 2002, 39, 100-110.	2.4	76
83	Validity and boundary conditions of automatic response activation in the Simon task Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 731-751.	0.9	156
84	An evaluation of methods for single-trial estimation of P3 latency. Psychophysiology, 2000, 37, 153-162.	2.4	40
85	CNV and temporal uncertainty with â€~ageing' and â€~non-ageing' S1–S2 intervals. Clinical Neurophysiology, 2000, 111, 1216-1226.	1.5	117
86	Posterior and Anterior Contribution of Hand-Movement Preparation to Late CNV. Journal of Psychophysiology, 2000, 14, 69-86.	0.7	58
87	Spatial S-R Compatibility with Centrally Presented Stimuli: An Event-Related Asymmetry Study on Dimensional Overlap. Journal of Cognitive Neuroscience, 1999, 11, 214-229.	2.3	52
88	Toward an integration of P3 research with cognitive neuroscience. Behavioral and Brain Sciences, 1998, 21, 150-152.	0.7	29
89	Lateralized Human Cortical Activity for Shifting Visuospatial Attention and Initiating Saccades. Journal of Neurophysiology, 1998, 80, 2900-2910.	1.8	62
90	On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 1997, 34, 131-156.	2.4	470

6

#	Article	IF	CITATIONS
91	Preparation for action: An ERP study about two tasks provoking variability in response speed. Psychophysiology, 1996, 33, 262-272.	2.4	39
92	Suspense and surprise: On the relationship between expectancies and P3. Psychophysiology, 1994, 31, 359-369.	2.4	64
93	Auditory selective attention is impaired in Parkinson's disease — event-related evidence from EEG potentials. Cognitive Brain Research, 1994, 2, 117-129.	3.0	49
94	The instruction to refrain from blinking affects auditory P3 and N1 amplitudes. Electroencephalography and Clinical Neurophysiology, 1991, 78, 240-251.	0.3	89
95	The true P3 is hard to see: Some comments on Kok's (1986) paper on degraded stimuli. Biological Psychology, 1988, 27, 45-50.	2.2	26
96	Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 1988, 11, 343.	0.7	830
97	Sequential effects on P3 in a counting task: A partial replication. Biological Psychology, 1987, 25, 221-246.	2.2	18
98	Principal component analysis of event-related potentials: A note on misallocation of variance. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1986, 65, 393-398.	2.0	84
99	SELAVCO: A method to deal with trial-to-trial variability of evoked potentials. Electroencephalography and Clinical Neurophysiology, 1983, 55, 717-723.	0.3	56
100	Correction of EOG Artifacts in Event-Related Potentials of the EEG: Aspects of Reliability and Validity. Psychophysiology, 1982, 19, 472-480.	2.4	171
101	Effects of certainty, modality shift and guess outcome on evoked potentials and reaction times in chronic schizophrenics. Psychological Medicine, 1978, 8, 81-93.	4.5	118