Michael T Gillin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1132892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical commissioning of pencil beam scanning for intensity-modulated proton therapy. , 2021, , 25-44.e3.		Ο
2	Intensity-modulated proton therapy patient treatments. , 2021, , 106-114.e2.		0
3	Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation. Physics and Imaging in Radiation Oncology, 2020, 13, 44-49.	1.2	3
4	Characterization of a new physical phantom for testing rigid and deformable image registration. Journal of Applied Clinical Medical Physics, 2019, 20, 145-153.	0.8	12
5	Dose calculation for spot scanning proton therapy with the application of a range shifter. Biomedical Physics and Engineering Express, 2017, 3, 035019.	0.6	2
6	Technical Note: Dosimetric characteristics of the ocular beam line and commissioning data for an ocular proton therapy planning system at the Proton Therapy Center Houston. Medical Physics, 2017, 44, 6661-6671.	1.6	7
7	Synchrotron-Based Pencil Beam Scanning Nozzle with an Integrated Mini-Ridge Filter: A Dosimetric Study to Optimize Treatment Delivery. Cancers, 2017, 9, 170.	1.7	4
8	Intensity-Modulated Proton Therapy Adaptive Planning for Patients with Oropharyngeal Cancer. International Journal of Particle Therapy, 2017, 4, 26-34.	0.9	26
9	Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy. Medical Physics, 2016, 43, 3975-3986.	1.6	17
10	Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma. International Journal of Radiation Oncology Biology Physics, 2016, 95, 360-367.	0.4	88
11	Novel Hybrid Scattering- and Scanning-Beam Proton Therapy Approach. International Journal of Particle Therapy, 2016, 3, 37-50.	0.9	2
12	Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy. Cancers, 2015, 7, 631-647.	1.7	59
13	A single-field integrated boost treatment planning technique for spot scanning proton therapy. Radiation Oncology, 2014, 9, 202.	1.2	24
14	Spot-Scanning Proton Therapy Patient-Specific Quality Assurance: Results from 309 Treatment Plans. International Journal of Particle Therapy, 2014, 1, 711-720.	0.9	20
15	Proton beam therapy for the treatment of prostate cancer. Practical Radiation Oncology, 2013, 3, e87-e94.	1.1	7
16	Improving spotâ€scanning proton therapy patient specific quality assurance with HPlusQA, a secondâ€check dose calculation engine. Medical Physics, 2013, 40, 121708.	1.6	32
17	Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Medical Physics, 2013, 40, 021703.	1.6	60
18	A procedure to determine the planar integral spot dose values of proton pencil beam spots. Medical Physics, 2012, 39, 891-900.	1.6	20

MICHAEL T GILLIN

#	Article	IF	CITATIONS
19	Patient-Specific Quality Assurance for Prostate Cancer Patients Receiving Spot Scanning Proton Therapy Using Single-Field Uniform Dose. International Journal of Radiation Oncology Biology Physics, 2011, 81, 552-559.	0.4	71
20	Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy. Medical Physics, 2011, 38, 4329-4337.	1.6	20
21	Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Medical Physics, 2010, 37, 154-163.	1.6	236
22	An <scp>MCNPX</scp> Monte Carlo model of a discrete spot scanning proton beam therapy nozzle. Medical Physics, 2010, 37, 4960-4970.	1.6	49
23	Experimental characterization of the low-dose envelope of spot scanning proton beams. Physics in Medicine and Biology, 2010, 55, 3467-3478.	1.6	69
24	Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Physics in Medicine and Biology, 2010, 55, 711-721.	1.6	58
25	Patient dosimetry for total body irradiation using singleâ€use MOSFET detectors. Journal of Applied Clinical Medical Physics, 2008, 9, 200-205.	0.8	12
26	Effect of output variation with dose rate on the Virtual Wedge factor. Journal of Applied Clinical Medical Physics, 2008, 9, 54-58.	0.8	0
27	Quality assurance methods for the first Radiation Therapy Oncology Group permanent prostate implant protocol. Brachytherapy, 2006, 5, 152-156.	0.2	4
28	Reimbursement versus effort in medical physics practice in radiation oncology. Journal of Applied Clinical Medical Physics, 2003, 4, 179-187.	0.8	6
29	Reimbursement versus effort in medical physics practice in radiation oncology. Journal of Applied Clinical Medical Physics, 2003, 4, 179.	0.8	5