Michael T Gillin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1132892/publications.pdf

Version: 2024-02-01

566801 552369 29 914 15 26 citations h-index g-index papers 31 31 31 790 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Medical Physics, 2010, 37, 154-163.	1.6	236
2	Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma. International Journal of Radiation Oncology Biology Physics, 2016, 95, 360-367.	0.4	88
3	Patient-Specific Quality Assurance for Prostate Cancer Patients Receiving Spot Scanning Proton Therapy Using Single-Field Uniform Dose. International Journal of Radiation Oncology Biology Physics, 2011, 81, 552-559.	0.4	71
4	Experimental characterization of the low-dose envelope of spot scanning proton beams. Physics in Medicine and Biology, 2010, 55, 3467-3478.	1.6	69
5	Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Medical Physics, 2013, 40, 021703.	1.6	60
6	Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy. Cancers, 2015, 7, 631-647.	1.7	59
7	Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Physics in Medicine and Biology, 2010, 55, 711-721.	1.6	58
8	An <scp>MCNPX</scp> Monte Carlo model of a discrete spot scanning proton beam therapy nozzle. Medical Physics, 2010, 37, 4960-4970.	1.6	49
9	Improving spotâ€scanning proton therapy patient specific quality assurance with HPlusQA, a secondâ€check dose calculation engine. Medical Physics, 2013, 40, 121708.	1.6	32
10	Intensity-Modulated Proton Therapy Adaptive Planning for Patients with Oropharyngeal Cancer. International Journal of Particle Therapy, 2017, 4, 26-34.	0.9	26
11	A single-field integrated boost treatment planning technique for spot scanning proton therapy. Radiation Oncology, 2014, 9, 202.	1.2	24
12	Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy. Medical Physics, 2011 , 38 , $4329-4337$.	1.6	20
13	A procedure to determine the planar integral spot dose values of proton pencil beam spots. Medical Physics, 2012, 39, 891-900.	1.6	20
14	Spot-Scanning Proton Therapy Patient-Specific Quality Assurance: Results from 309 Treatment Plans. International Journal of Particle Therapy, 2014, 1, 711-720.	0.9	20
15	Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy. Medical Physics, 2016, 43, 3975-3986.	1.6	17
16	Patient dosimetry for total body irradiation using singleâ€use MOSFET detectors. Journal of Applied Clinical Medical Physics, 2008, 9, 200-205.	0.8	12
17	Characterization of a new physical phantom for testing rigid and deformable image registration. Journal of Applied Clinical Medical Physics, 2019, 20, 145-153.	0.8	12
18	Proton beam therapy for the treatment of prostate cancer. Practical Radiation Oncology, 2013, 3, e87-e94.	1.1	7

#	Article	IF	CITATIONS
19	Technical Note: Dosimetric characteristics of the ocular beam line and commissioning data for an ocular proton therapy planning system at the Proton Therapy Center Houston. Medical Physics, 2017, 44, 6661-6671.	1.6	7
20	Reimbursement versus effort in medical physics practice in radiation oncology. Journal of Applied Clinical Medical Physics, 2003, 4, 179-187.	0.8	6
21	Reimbursement versus effort in medical physics practice in radiation oncology. Journal of Applied Clinical Medical Physics, 2003, 4, 179.	0.8	5
22	Quality assurance methods for the first Radiation Therapy Oncology Group permanent prostate implant protocol. Brachytherapy, 2006, 5, 152-156.	0.2	4
23	Synchrotron-Based Pencil Beam Scanning Nozzle with an Integrated Mini-Ridge Filter: A Dosimetric Study to Optimize Treatment Delivery. Cancers, 2017, 9, 170.	1.7	4
24	Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation. Physics and Imaging in Radiation Oncology, 2020, 13, 44-49.	1.2	3
25	Dose calculation for spot scanning proton therapy with the application of a range shifter. Biomedical Physics and Engineering Express, 2017, 3, 035019.	0.6	2
26	Novel Hybrid Scattering- and Scanning-Beam Proton Therapy Approach. International Journal of Particle Therapy, 2016, 3, 37-50.	0.9	2
27	Effect of output variation with dose rate on the Virtual Wedge factor. Journal of Applied Clinical Medical Physics, 2008, 9, 54-58.	0.8	O
28	Clinical commissioning of pencil beam scanning for intensity-modulated proton therapy. , 2021, , 25-44.e3.		0
29	Intensity-modulated proton therapy patient treatments. , 2021, , 106-114.e2.		O