Tom Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113272/publications.pdf

Version: 2024-02-01

315357 304368 1,621 52 22 38 citations h-index g-index papers 57 57 57 1810 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Superâ€Resolution Imaging of Highly Curved Membrane Structures in Giant Vesicles Encapsulating Molecular Condensates. Advanced Materials, 2022, 34, e2106633.	11.1	19
2	Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synthetic Biology, 2022, 11, 205-215.	1.9	38
3	Controlled adhesion, membrane pinning and vesicle transport by Janus particles. Chemical Communications, 2022, 58, 3055-3058.	2.2	6
4	Surfactant-free production of biomimetic giant unilamellar vesicles using PDMS-based microfluidics. Communications Chemistry, 2021, 4, .	2.0	30
5	Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells. ACS Nano, 2021, 15, 15656-15666.	7. 3	27
6	Minimal Pathway for the Regeneration of Redox Cofactors. Jacs Au, 2021, 1, 2280-2293.	3.6	14
7	Membrane permeability to water measured by microfluidic trapping of giant vesicles. Soft Matter, 2020, 16, 7359-7369.	1.2	19
8	Precipitation of Calcium Carbonate Inside Giant Unilamellar Vesicles Composed of Fluid-Phase Lipids. Langmuir, 2020, 36, 13244-13250.	1.6	5
9	Study of the Interaction of a Novel Semi-Synthetic Peptide with Model Lipid Membranes. Membranes, 2020, 10, 294.	1.4	9
10	On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis. Micromachines, 2020, 11, 285.	1.4	9
11	Graphitic Carbon Nitride Stabilizers Meet Microfluidics: From Stable Emulsions to Photoinduced Synthesis of Hollow Polymer Spheres. Small, 2020, 16, e2001180.	5.2	25
12	Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie - International Edition, 2020, 59, 5950-5957.	7.2	139
13	Reversible pHâ€Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie, 2020, 132, 6006-6013.	1.6	29
14	Special Issue on Bottomâ€Up Synthetic Biology. ChemBioChem, 2019, 20, 2533-2534.	1.3	13
15	Optimization of the Inverted Emulsion Method for Highâ€Yield Production of Biomimetic Giant Unilamellar Vesicles. ChemBioChem, 2019, 20, 2674-2682.	1.3	77
16	Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies. Lab on A Chip, 2019, 19, 626-633.	3.1	39
17	Poly(Ionic Liquid) Nanoparticles Selectively Disrupt Biomembranes. Advanced Science, 2019, 6, 1801602.	5.6	14
18	Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. Scientific Reports, 2019, 9, 7708.	1.6	9

#	Article	IF	CITATIONS
19	Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review. Advanced Biology, 2019, 3, e1800318.	3.0	39
20	Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells. ChemBioChem, 2019, 20, 2666-2673.	1.3	9
21	Nanotubes Transform into Double-Membrane Sheets at the Interface between Two Aqueous Polymer Solutions. Biophysical Journal, 2019, 116, 226a.	0.2	1
22	Microfluidics and giant vesicles: creation, capture, and applications for biomembranes. Advances in Biomembranes and Lipid Self-Assembly, 2019, , 271-315.	0.3	2
23	Highly Efficient Protein-free Membrane Fusion: AÂGiant Vesicle Study. Biophysical Journal, 2019, 116, 79-91.	0.2	76
24	Interactions of Poly(Ionic Liquid) Nanoparticles with Giant Unilamellar Vesicles. Biophysical Journal, 2018, 114, 99a-100a.	0.2	0
25	Freeze-thaw cycles induce content exchange between cell-sized lipid vesicles. New Journal of Physics, 2018, 20, 055008.	1.2	46
26	Spatially Confined Membrane Fusion with SNARE Mimetics. Biophysical Journal, 2018, 114, 608a.	0.2	0
27	Super Resolution Imaging of Highly Curved Membrane Structures in Giant Unilamellar Vesicles Encapsulating Polymer Solutions. Biophysical Journal, 2018, 114, 100a-101a.	0.2	1
28	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
29	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234
30	Phase Specific Membrane Fusion with SNARE Mimetics. Biophysical Journal, 2017, 112, 77a.	0.2	0
31	Phase Behavior of Charged Vesicles Under Symmetric and Asymmetric Solution Conditions Monitored with Fluorescence Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	14
32	Membrane Fusion via Snare Mimetics Spatially Confined to Intramembrane Domains. Biophysical Journal, 2016, 110, 249a-250a.	0.2	0
33	Membranes under shear stress: visualization of non-equilibrium domain patterns and domain fusion in a microfluidic device. Soft Matter, 2016, 12, 5072-5076.	1.2	31
34	Solution Asymmetry and Salt Expand Fluid-Fluid Coexistence Regions of Charged Membranes. Biophysical Journal, 2016, 110, 2581-2584.	0.2	34
35	Presence of Salt and Solution Asymmetry Across Charged Membranes Influences Their Phase State. Biophysical Journal, 2016, 110, 413a.	0.2	0
36	Interaction of <i>β</i> ³ / <i>β</i> ² â€Peptides, Consisting of Valâ€Alaâ€Leu Segments, with POPC Giant Unilamellar Vesicles (GUVs) and White Blood Cancer Cells (U937) – A New Type of Cellâ€Penetrating Peptides, and a Surprising Chainâ€Length Dependence of Their Vesicleâ€and Cellâ€Lysing Activity. Chemistry and Biodiversity, 2015, 12, 697-732.	1.0	17

3

#	Article	IF	CITATIONS
37	A simple low-cost method to enhance luminescence and fluorescence signals in PDMS-based microfluidic devices. RSC Advances, 2015, 5, 12511-12516.	1.7	17
38	Analysis of DNA Binding and Nucleotide Flipping Kinetics Using Two-Color Two-Photon Fluorescence Lifetime Imaging Microscopy. Analytical Chemistry, 2014, 86, 10732-10740.	3.2	12
39	Controllable electrofusion of lipid vesicles: initiation and analysis of reactions within biomimetic containers. Lab on A Chip, 2014, 14, 2852.	3.1	40
40	Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times. Biophysical Journal, 2013, 105, 420-431.	0.2	18
41	Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore. Biomicrofluidics, 2013, 7, 44105.	1.2	81
42	Enantiomeric and Diastereoisomeric (Mixed) <scp>L</scp> / <scp>D</scp> â€Octaarginine Derivatives – A Simple Way of Modulating the Properties of Cellâ€Penetrating Peptides. Chemistry and Biodiversity, 2013, 10, 1165-1184.	1.0	26
43	Microfluidic Technology for Molecular Diagnostics. Advances in Biochemical Engineering/Biotechnology, 2012, 133, 89-114.	0.6	8
44	A facile protocol for the immobilisation of vesicles, virus particles, bacteria, and yeast cells. Integrative Biology (United Kingdom), 2012, 4, 1550.	0.6	43
45	The Investigation of Lipid Membrane Deformation in Giant Unilamellar Vesicles using Microfluidic Technology. Biophysical Journal, 2012, 102, 33a.	0.2	1
46	Differential modes of DNA binding by mismatch uracil DNA glycosylase from Escherichia coli: implications for abasic lesion processing and enzyme communication in the base excision repair pathway. Nucleic Acids Research, 2011, 39, 2593-2603.	6.5	15
47	Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics. Proceedings of SPIE, 2010, , .	0.8	2
48	Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging. Lab on A Chip, 2009, 9, 3437.	3.1	28
49	Optical detection in microfluidics: From the small to the large. , 2009, , .		0
50	Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets. Analytical Chemistry, 2009, 81, 302-306.	3.2	240
51	Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging. Optics Letters, 2008, 33, 1887.	1.7	26
52	Comparison of free surface polarization of NiMnSb and Co2MnSi. Applied Physics Letters, 2006, 88, 142512.	1.5	10