Gv Shivashankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11325815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanogenomic coupling of lung tissue stiffness, EMT and coronavirus pathogenicity. Current Opinion in Solid State and Materials Science, 2021, 25, 100874.	5.6	3
2	Mechanical regulation of genome architecture and cell-fate decisions. Current Opinion in Cell Biology, 2019, 56, 115-121.	2.6	37
3	Nuclear Mechanopathology and Cancer Diagnosis. Trends in Cancer, 2018, 4, 320-331.	3.8	106
4	Actin Dynamics Couples Extracellular Signals to the Mobility and Molecular Stability of Telomeres. Biophysical Journal, 2018, 115, 1166-1179.	0.2	10
5	Cell geometric control of nuclear dynamics and its implications. , 2018, , 55-76.		0
6	Nuclear Positioning and Its Translational Dynamics Are Regulated by Cell Geometry. Biophysical Journal, 2017, 112, 1920-1928.	0.2	8
7	Coupling between chromosome intermingling and gene regulation during cellular differentiation. Methods, 2017, 123, 66-75.	1.9	2
8	Chromosome Intermingling: Mechanical Hotspots for Genome Regulation. Trends in Cell Biology, 2017, 27, 810-819.	3.6	36
9	Geometric control and modeling of genome reprogramming. Bioarchitecture, 2016, 6, 76-84.	1.5	15
10	Regulation of nuclear morphology by actomyosin components and cell geometry. , 2015, 2015, 342-5.		1
11	Micropillar displacements by cell traction forces are mechanically correlated with nuclear dynamics. Biochemical and Biophysical Research Communications, 2015, 461, 372-377.	1.0	8
12	Cytoskeletal Control of Nuclear Morphology and Chromatin Organization. Journal of Molecular Biology, 2015, 427, 695-706.	2.0	155
13	ATR Mediates a Checkpoint at the Nuclear Envelope in Response to Mechanical Stress. Cell, 2014, 158, 633-646.	13.5	179
14	The regulation of gene expression during onset of differentiation by nuclear mechanical heterogeneity. Biomaterials, 2014, 35, 2411-2419.	5.7	32
15	YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Letters, 2014, 588, 2663-2670.	1.3	354
16	The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials, 2014, 35, 961-969.	5.7	113
17	Model of T-Cell Nuclear Deformation by the Cortical Actin Layer. Biophysical Journal, 2013, 105, 1316-1323.	0.2	18
18	Correlated Spatio-Temporal Fluctuations in Chromatin Compaction States Characterize Stem Cells. Biophysical Journal, 2013, 104, 553-564.	0.2	73

GV SHIVASHANKAR

#	Article	IF	CITATIONS
19	Mechanical Activation of Cells Induces Chromatin Remodeling Preceding MKL Nuclear Transport. Biophysical Journal, 2012, 103, 1416-1428.	0.2	155
20	Dynamic Organization of Transcription Compartments Is Dependent on Functional Nuclear Architecture. Biophysical Journal, 2012, 103, 851-859.	0.2	15
21	Mechanosignaling to the Cell Nucleus and Gene Regulation. Annual Review of Biophysics, 2011, 40, 361-378.	4.5	153
22	Dynamic Organization of Chromatin Assembly and Transcription Factories in Living Cells. Methods in Cell Biology, 2010, 98, 57-78.	0.5	10
23	Prestressed Nuclear Organization in Living Cells. Methods in Cell Biology, 2010, 98, 221-239.	0.5	13
24	Probing structural stability of chromatin assembly sorted from living cells. Biochemical and Biophysical Research Communications, 2009, 385, 518-522.	1.0	7
25	Spatio-Temporal Plasticity in Chromatin Organization in Mouse Cell Differentiation and during Drosophila Embryogenesis. Biophysical Journal, 2009, 96, 3832-3839.	0.2	112
26	Dynamics of Chromatin Decondensation Reveals the Structural Integrity of a Mechanically Prestressed Nucleus. Biophysical Journal, 2008, 95, 3028-3035.	0.2	116
27	Probing the Dynamic Organization of Transcription Compartments and Gene Loci within the Nucleus of Living Cells. Biophysical Journal, 2008, 95, 5432-5438.	0.2	16
28	Trichostatin-A induces differential changes in histone protein dynamics and expression in HeLa cells. Biochemical and Biophysical Research Communications, 2007, 363, 263-268.	1.0	48
29	Gold-Nanoparticle-Assisted Laser Perturbation of Chromatin Assembly Reveals Unusual Aspects of Nuclear Architecture within Living Cells. Biophysical Journal, 2007, 93, 2209-2216.	0.2	54
30	EGFP-Tagged Core and Linker Histones Diffuse via Distinct Mechanisms within Living Cells. Biophysical Journal, 2006, 91, 2326-2336.	0.2	41
31	Chromatin Structure Exhibits Spatio-Temporal Heterogeneity within the Cell Nucleus. Biophysical Journal, 2006, 91, 2297-2303.	0.2	35
32	Direct Measurement of Local Chromatin Fluidity Using Optical Trap Modulation Force Spectroscopy. Biophysical Journal, 2006, 91, 4632-4637.	0.2	14
33	Dynamics of Membrane Nanotubulation and DNA Self-Assembly. Biophysical Journal, 2004, 87, 974-979.	0.2	11
34	Single Particle Tracking of Correlated Bacterial Dynamics. Biophysical Journal, 2003, 84, 2634-2637.	0.2	81
35	Normal state tunneling conductance of perovskite oxides. Physica C: Superconductivity and Its Applications, 1992, 195, 87-92.	0.6	15
36	Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3). Solid State Communications, 1991, 79, 591-595.	0.9	226