Lei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11325321/publications.pdf

Version: 2024-02-01

471509 752698 1,594 20 17 20 citations h-index g-index papers 21 21 21 1927 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature Methods, 2020, 17, 665-680.	19.0	513
2	Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10165-10170.	7.1	158
3	Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9101-9106.	7.1	154
4	Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6969-6974.	7.1	129
5	Structural and Dynamic Basis of Phospholamban and Sarcolipin Inhibition of Ca ²⁺ -ATPase. Biochemistry, 2008, 47, 3-13.	2.5	121
6	Intrinsic disorder drives N-terminal ubiquitination by Ube2w. Nature Chemical Biology, 2015, 11, 83-89.	8.0	68
7	cAMP-Dependent Protein Kinase A Selects the Excited State of the Membrane Substrate Phospholamban. Journal of Molecular Biology, 2011, 412, 155-164.	4.2	58
8	A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis. ELife, 2015, 4, .	6.0	52
9	A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints. Journal of Biomolecular NMR, 2009, 44, 195-205.	2.8	48
10	Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3716-3721.	7.1	43
11	Allostery and Binding Cooperativity of the Catalytic Subunit of Protein Kinase A by NMR Spectroscopy and Molecular Dynamics Simulations. Advances in Protein Chemistry and Structural Biology, 2012, 87, 363-389.	2.3	41
12	Structure of the \hat{l}_{\pm} -crystallin domain from the redox-sensitive chaperone, HSPB1. Journal of Biomolecular NMR, 2015, 63, 223-228.	2.8	38
13	Tilt and Azimuthal Angles of a Transmembrane Peptide: A Comparison between Molecular Dynamics Calculations and Solid-State NMR Data of Sarcolipin in Lipid Membranes. Biophysical Journal, 2009, 96, 3648-3662.	0.5	33
14	A hybrid NMR/SAXSâ€based approach for discriminating oligomeric protein interfaces using <scp>R</scp> osetta. Proteins: Structure, Function and Bioinformatics, 2015, 83, 309-317.	2.6	33
15	Probing membrane topology of the antimicrobial peptide distinctin by solid-state NMR spectroscopy in zwitterionic and charged lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 34-40.	2.6	28
16	Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins. Journal of the American Chemical Society, 2011, 133, 2232-2241.	13.7	25
17	Structures of the Excited States of Phospholamban and Shifts in Their Populations upon Phosphorylation. Biochemistry, 2013, 52, 6684-6694.	2.5	24
18	Backbone NMR resonance assignment of the catalytic subunit of cAMP-dependent protein kinase A in complex with AMP-PNP. Biomolecular NMR Assignments, 2009, 3, 115-117.	0.8	13

#	Article	lF	CITATIONS
19	What Can We Learn from a Small Regulatory Membrane Protein?. Methods in Molecular Biology, 2010, 654, 303-319.	0.9	8
20	Propagation of photon noise and information transfer in visual motion detection. Journal of Computational Neuroscience, 2006, 20, 167-178.	1.0	6