Donald H Paterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11325229/publications.pdf

Version: 2024-02-01

119 papers

6,870 citations

43 h-index 80 g-index

120 all docs 120 docs citations

120 times ranked

6488 citing authors

#	Article	IF	CITATIONS
1	Evaluating the Accuracy of Using Fixed Ranges of METs to Categorize Exertional Intensity in a Heterogeneous Group of Healthy Individuals: Implications for Cardiorespiratory Fitness and Health Sutcomes. Sports Medicine, 2021; 51, 2411-2421; 1998/Math/Math/Mtm. altimg="si6.gif"	3.1	23
2	overflow="scroll"> <mml:mrow><mml:mover accent="true"><mml:mi mathvariant="normal">V</mml:mi><mml:mo> \mml:mo> </mml:mo></mml:mover><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow> <td>/>^Q/mml:m</td> <td>a6h>kinetics</td>	/> ^Q /mml:m	a 6 h>kinetics
3	Neurobiology, 2018, 251, 41-49. Using ramp-incremental <i>V̇</i> O ₂ responses for constant-intensity exercise selection. Applied Physiology, Nutrition and Metabolism, 2018, 43, 882-892.	0.9	64
4	Measurement of a True V˙O2max during a Ramp Incremental Test Is Not Confirmed by a Verification Phase. Frontiers in Physiology, 2018, 9, 143.	1.3	44
5	Similar pattern of change in Vì‡ <scp>o</scp> ₂ kinetics, vascular function, and tissue oxygen provision following an endurance training stimulus in older and young adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R467-R476.	0.9	10
6	Response to Letter from Tremblay & Dearâ€infrared spectroscopy: can it measure conduit artery endothelial function?. Experimental Physiology, 2017, 102, 128-129.	0.9	3
7	Repeatability of vascular responsiveness measures derived from near-infrared spectroscopy. Physiological Reports, 2016, 4, e12772.	0.7	68
8	Vascular responsiveness determined by nearâ€infrared spectroscopy measures of oxygen saturation. Experimental Physiology, 2016, 101, 34-40.	0.9	80
9	Vascular responsiveness measured by tissue oxygen saturation reperfusion slope is sensitive to different occlusion durations and training status. Experimental Physiology, 2016, 101, 1309-1318.	0.9	45
10	Slower V˙O2 Kinetics in Older Individuals. Medicine and Science in Sports and Exercise, 2015, 47, 2308-2318.	0.2	19
11	Response. Medicine and Science in Sports and Exercise, 2015, 47, 1998-1999.	0.2	4
12	Control of V˙O2 Kinetics. Medicine and Science in Sports and Exercise, 2015, 47, 2480.	0.2	4
13	Effects of Age and Long-Term Endurance Training on V·O2 Kinetics. Medicine and Science in Sports and Exercise, 2015, 47, 289-298.	0.2	35
14	Exercise Intensity Thresholds. Medicine and Science in Sports and Exercise, 2015, 47, 1932-1940.	0.2	151
15	Reply. Experimental Physiology, 2015, 100, 476-476.	0.9	0
16	Breathâ€byâ€breath pulmonary O ₂ uptake kinetics: effect of data processing on confidence in estimating model parameters. Experimental Physiology, 2014, 99, 1511-1522.	0.9	65
17	The Critical Role of O2 Provision in the Dynamic Adjustment of Oxidative Phosphorylation. Exercise and Sport Sciences Reviews, 2014, 42, 4-11.	1.6	49
18	Pulmonary O2 uptake kinetics during moderate-intensity exercise transitions initiated from low versus elevated metabolic rates: insights from manipulations in cadence. European Journal of Applied Physiology, 2014, 114, 2655-2665.	1,2	9

#	Article	IF	CITATIONS
19	Sex-related differences in muscle deoxygenation during ramp incremental exercise: Response to Peltonen et al Respiratory Physiology and Neurobiology, 2014, 195, 61-62.	0.7	2
20	Faster \$\$dot{V}{ext{O}}_{ 2}\$\$ V Ë™ O 2 kinetics after eccentric contractions is explained by better matching of O2 delivery to O2 utilization. European Journal of Applied Physiology, 2014, 114, 2169-2181.	1.2	4
21	"Tailored―Submaximal Step Test for VO2max Prediction in Healthy Older Adults. Journal of Aging and Physical Activity, 2014, 22, 261-268.	0.5	14
22	Effect of acute hypoxia on muscle blood flow, VO2p, and [HHb] kinetics during leg extension exercise in older men. European Journal of Applied Physiology, 2013, 113, 1685-1694.	1.2	4
23	Effect of voluntary hyperventilation with supplemental CO ₂ on pulmonary O ₂ uptake and leg blood flow kinetics during moderateâ€intensity exercise. Experimental Physiology, 2013, 98, 1668-1682.	0.9	17
24	Sex-related differences in muscle deoxygenation during ramp incremental exercise. Respiratory Physiology and Neurobiology, 2013, 189, 530-536.	0.7	44
25	Oxygen uptake kinetics in endurance-trained and untrained postmenopausal women. Applied Physiology, Nutrition and Metabolism, 2013, 38, 154-160.	0.9	13
26	Influence of hormone replacement therapy and aerobic exercise training on oxygen uptake kinetics in postmenopausal women. Applied Physiology, Nutrition and Metabolism, 2013, 38, 657-665.	0.9	4
27	Prolonged moderate-intensity exercise oxygen uptake response following heavy-intensity priming exercise with short- and longer-term recovery. Applied Physiology, Nutrition and Metabolism, 2013, 38, 566-573.	0.9	5
28	Effect of moderate-intensity work rate increment on phase II τVO2, functional gain and Δ[HHb]. European Journal of Applied Physiology, 2013, 113, 545-557.	1.2	21
29	High-intensity interval training speeds the adjustment of pulmonary O ₂ uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates. Journal of Applied Physiology, 2013, 114, 1550-1562.	1.2	23
30	Flexibility of Older Adults Aged 55–86 Years and the Influence of Physical Activity. Journal of Aging Research, 2013, 2013, 1-8.	0.4	73
31	Systemic and vastus lateralis muscle blood flow and O ₂ extraction during ramp incremental cycle exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R720-R725.	0.9	52
32	Duration of "Phase l―V̇o2p: a comparison of methods used in its estimation and the effects of varying moderate-intensity work rate. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R238-R247.	0.9	6
33	Noninvasive estimation of microvascular O ₂ provision during exercise on-transients in healthy young males. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R815-R823.	0.9	27
34	Adjustments of pulmonary O ₂ uptake and muscle deoxygenation during ramp incremental exercise and constant-load moderate-intensity exercise in young and older adults. Journal of Applied Physiology, 2012, 113, 1466-1475.	1.2	20
35	Characterizing the profile of muscle deoxygenation during ramp incremental exercise in young men. European Journal of Applied Physiology, 2012, 112, 3349-3360.	1.2	69
36	Muscle metabolic status and acid-base balance during 10-s work:5-s recovery intermittent and continuous exercise. Journal of Applied Physiology, 2012, 113, 410-417.	1.2	18

#	Article	IF	CITATIONS
37	The effects of short recovery duration on VO2 and muscle deoxygenation during intermittent exercise. European Journal of Applied Physiology, 2012, 112, 1907-1915.	1.2	17
38	Regulation of VI‡ <scp>o</scp> ₂ kinetics by O ₂ delivery: insights from acute hypoxia and heavy-intensity priming exercise in young men. Journal of Applied Physiology, 2012, 112, 1023-1032.	1.2	38
39	Higher Cardiorespiratory Fitness in Older Trained Women is Due to Preserved Stroke Volume. Journal of Sports Science and Medicine, 2012, 11, 745-50.	0.7	5
40	New Canadian Physical Activity Guidelines. Applied Physiology, Nutrition and Metabolism, 2011, 36, 36-46.	0.9	871
41	Nouvelles Directives canadiennes en matière d'activité physique. Applied Physiology, Nutrition and Metabolism, 2011, 36, 47-58.	0.9	50
42	Speeding of \hat{Vl}^{+} <scp>o</scp> ₂ kinetics during moderate-intensity exercise subsequent to heavy-intensity exercise is associated with improved local O ₂ distribution. Journal of Applied Physiology, 2011, 111, 1410-1415.	1.2	46
43	A raised metabolic rate slows pulmonary O ₂ uptake kinetics on transition to moderate-intensity exercise in humans independently of work rate. Experimental Physiology, 2011, 96, 1049-1061.	0.9	33
44	Speeding of VO2 kinetics in response to endurance-training in older and young women. European Journal of Applied Physiology, 2011, 111, 235-243.	1.2	60
45	Are the parameters of VO2, heart rate and muscle deoxygenation kinetics affected by serial moderate-intensity exercise transitions in a single day?. European Journal of Applied Physiology, 2011, 111, 591-600.	1.2	56
46	Pulmonary O2 uptake and muscle deoxygenation kinetics are slowed in the upper compared with lower region of the moderate-intensity exercise domain in older men. European Journal of Applied Physiology, 2011, 111, 2139-2148.	1.2	26
47	Muscle deoxygenation to VO2 relationship differs in young subjects with varying τVO2. European Journal of Applied Physiology, 2011, 111, 3107-3118.	1.2	55
48	Adaptations in Capillarization and Citrate Synthase Activity in Response to Endurance Training in Older and Young Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 957-964.	1.7	41
49	Influence of phase I duration on phase II V̇ <scp>o</scp> ₂ kinetics parameter estimates in older and young adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R218-R224.	0.9	78
50	Mechanisms for Increases in V˙O2max with Endurance Training in Older and Young Women. Medicine and Science in Sports and Exercise, 2010, 42, 1891-1898.	0.2	35
51	Time course and mechanisms of adaptations in cardiorespiratory fitness with endurance training in older and young men. Journal of Applied Physiology, 2010, 108, 621-627.	1.2	101
52	Speeding of \hat{Vl}^{+} <scp>o</scp> ₂ kinetics with endurance training in old and young men is associated with improved matching of local O ₂ delivery to muscle O ₂ utilization. Journal of Applied Physiology, 2010, 108, 913-922.	1.2	116
53	Kinetics of VO2 limb blood flow and regional muscle deoxygenation in young adults during moderate intensity, knee-extension exercise. European Journal of Applied Physiology, 2010, 108, 607-617.	1.2	48
54	Effect of hyperventilation and prior heavy exercise on O2 uptake and muscle deoxygenation kinetics during transitions to moderate exercise. European Journal of Applied Physiology, 2010, 108, 913-925.	1.2	16

#	Article	IF	CITATIONS
55	Differences in exercise limb blood flow and muscle deoxygenation with age: contributions to O2 uptake kinetics. European Journal of Applied Physiology, 2010, 110, 739-751.	1.2	22
56	Pulmonary O ₂ uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. Journal of Applied Physiology, 2010, 108, 1641-1650.	1.2	19
57	Physical activity and functional limitations in older adults: a systematic review related to Canada's Physical Activity Guidelines. International Journal of Behavioral Nutrition and Physical Activity, 2010, 7, 38.	2.0	621
58	Moderate and heavy oxygen uptake kinetics in postmenopausal women. Applied Physiology, Nutrition and Metabolism, 2009, 34, 1065-1072.	0.9	7
59	Prior heavy exercise elevates pyruvate dehydrogenase activity and muscle oxygenation and speeds O ₂ uptake kinetics during moderate exercise in older adults. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R877-R884.	0.9	32
60	Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise. Respiratory Physiology and Neurobiology, 2009, 169, 24-35.	0.7	36
61	Effect of short-term high-intensity interval training vs. continuous training on O ₂ uptake kinetics, muscle deoxygenation, and exercise performance. Journal of Applied Physiology, 2009, 107, 128-138.	1.2	129
62	Maximal and submaximal aerobic fitness in postmenopausal women: influence of hormone-replacement therapy. Applied Physiology, Nutrition and Metabolism, 2008, 33, 922-928.	0.9	4
63	Prior exercise speeds pulmonary O2 uptake kinetics by increases in both local muscle O2 availability and O2 utilization. Journal of Applied Physiology, 2007, 103, 771-778.	1.2	56
64	Cerebral and muscle tissue oxygenation in acute hypoxic ventilatory response test. Respiratory Physiology and Neurobiology, 2007, 155, 71-81.	0.7	34
65	article is part of a supplement entitled <i>Advancing physical activity measurement and guidelines in Canada: a scientific review and evidence-based foundation for the future of Canadian physical activity guidelines</i> guidelines co-published by <i>Applied Physiology, Nutrition, and Metabolism</i> and the <i>Canadian Journal of Public Health</i> lt may be cited as Appl. Physiol. Nutr. Metab. 32(Suppl. 2E) or	0.9	112
66	as Can. J. Pu. Applied Physiology, Nutrition and Metabolism, 2007, 32, 569-5108. Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise. Applied Physiology, Nutrition and Metabolism, 2007, 32, 1251-1262.	0.9	52
67	Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2uptake during the transition to moderate-intensity exercise. Journal of Physiology, 2007, 583, 351-364.	1.3	40
68	Adaptation of pulmonary O2 uptake kinetics and muscle deoxygenation at the onset of heavy-intensity exercise in young and older adults. Journal of Applied Physiology, 2005, 98, 1697-1704.	1.2	70
69	Effects of prior heavy-intensity exercise during single-leg knee extension on v̇o2 kinetics and limb blood flow. Journal of Applied Physiology, 2005, 99, 1462-1470.	1.2	32
70	Kinetics of V̇o2 and femoral artery blood flow during heavy-intensity, knee-extension exercise. Journal of Applied Physiology, 2005, 99, 683-690.	1.2	18
71	Kinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain. Journal of Applied Physiology, 2005, 99, 1822-1834.	1.2	74
72	Prior heavy-intensity exercise speeds V̇o2 kinetics during moderate-intensity exercise in young adults. Journal of Applied Physiology, 2005, 98, 1371-1378.	1.2	84

#	Article	IF	Citations
73	Longitudinal Study of Determinants of Dependence in an Elderly Population. Journal of the American Geriatrics Society, 2004, 52, 1632-1638.	1.3	126
74	The effect of hypoxia on pulmonary O2uptake, leg blood flow and muscle deoxygenation during single-leg knee-extension exercise. Experimental Physiology, 2004, 89, 293-302.	0.9	59
75	Peripheral chemoreceptor control of ventilation following sustained hypoxia in young and older adult humans. Experimental Physiology, 2004, 89, 647-656.	0.9	14
76	Longitudinal changes in aerobic power in older men and women. Journal of Applied Physiology, 2004, 97, 781-789.	1.2	112
77	Effects of prior heavy-intensity exercise on pulmonary O2 uptake and muscle deoxygenation kinetics in young and older adult humans. Journal of Applied Physiology, 2004, 97, 998-1005.	1.2	111
78	Effect of age on O2 uptake kinetics and the adaptation of muscle deoxygenation at the onset of moderate-intensity cycling exercise. Journal of Applied Physiology, 2004, 97, 165-172.	1.2	95
79	Allometric scaling of strength in an independently living population age 55-86 years. American Journal of Human Biology, 2003, 15, 48-60.	0.8	14
80	Can primary care doctors prescribe exercise to improve fitness?. American Journal of Preventive Medicine, 2003, 24, 316-322.	1.6	156
81	Blunted Cardiac Autonomic Responsiveness to Hypoxemic Stress in Healthy Older Adults. Applied Physiology, Nutrition, and Metabolism, 2003, 28, 518-535.	1.7	9
82	Short-term Training Effects on Left Ventricular Diastolic Function and Oxygen Uptake in Older and Younger Men. Clinical Journal of Sport Medicine, 2003, 13, 245-251.	0.9	6
83	Relationship between pulmonary O ₂ uptake kinetics and muscle deoxygenation during moderate-intensity exercise. Journal of Applied Physiology, 2003, 95, 113-120.	1.2	314
84	Oxygen uptake kinetics for moderate exercise are speeded in older humans by prior heavy exercise. Journal of Applied Physiology, 2002, 92, 609-616.	1.2	85
85	Cerebral blood flow responses to changes in oxygen and carbon dioxide in humans. Canadian Journal of Physiology and Pharmacology, 2002, 80, 819-827.	0.7	32
86	A Self-Paced Step Test to Predict Aerobic Fitness in Older Adults in the Primary Care Clinic. Journal of the American Geriatrics Society, 2001, 49, 632-638.	1.3	94
87	A Comparison of Modelling Techniques used to Characterise Oxygen Uptake Kinetics During the on-Transient of Exercise. Experimental Physiology, 2001, 86, 667-676.	0.9	63
88	Determinants of Oxygen Uptake Kinetics in Older Humans Following Single-Limb Endurance Exercise Training. Experimental Physiology, 2001, 86, 659-665.	0.9	54
89	Body Position and Cardiac Dynamic and Chronotropic Responses to Steady-State Isocapnic Hypoxaemia in Humans. Experimental Physiology, 2000, 85, 227-237.	0.9	13
90	Changes in Chemoreflex Characteristics Following Acute Carbonic Anhydrase Inhibition in Humans a Rest. Experimental Physiology, 2000, 85, 847-856.	0.9	9

#	Article	IF	CITATIONS
91	Left Ventricular Diastolic Filling and Cardiovascular Functional Capacity in Older Men. Experimental Physiology, 2000, 85, 547-555.	0.9	6
92	Modelling the Influence of Fat-Free Mass and Physical Activity on the Decline in Maximal Oxygen Uptake with Age in Older Humans. Experimental Physiology, 2000, 85, 877-885.	0.9	17
93	Carbonic anhydrase inhibition delays plasma lactate appearance with no effect on ventilatory threshold. Journal of Applied Physiology, 2000, 88, 713-721.	1.2	18
94	Muscle metabolism during heavy-intensity exercise after acute acetazolamide administration. Journal of Applied Physiology, 2000, 88, 722-729.	1.2	8
95	Forearm muscle metabolism studied using 31P-MRS during progressive exercise to fatigue after Acz administration. Journal of Applied Physiology, 2000, 89, 200-209.	1.2	21
96	Changes in chemoreflex characteristics following acute carbonic anhydrase inhibition in humans at rest. Experimental Physiology, 2000, 85, 847-856.	0.9	6
97	Body Position and Cardiac Dynamic and Chronotropic Responses to Steady-State Isocapnic Hypoxaemia in Humans., 2000, 85, 227.		4
98	Left Ventricular Diastolic Filling and Cardiovascular Functional Capacity in Older Men., 2000, 85, 547.		3
99	Modelling the Influence of Fat-Free Mass and Physical Activity on the Decline in Maximal Oxygen Uptake with Age in Older Humans. , 2000, 85, 877.		3
100	V˙co 2 andV˙e kinetics during moderate- and heavyintensity exercise after acetazolamide administration. Journal of Applied Physiology, 1999, 86, 1534-1543.	1.2	20
101	Peripheral chemoreceptor function after carbonic anhydrase inhibition during moderate-intensity exercise. Journal of Applied Physiology, 1999, 86, 1544-1551.	1.2	13
102	The Gas Transporting Systems: Limits and Modifications With Age and Training. Applied Physiology, Nutrition, and Metabolism, 1999, 24, 28-40.	1.7	10
103	Physician Contact with Older Community Patients: Is There an Association with Physical Fitness?. Preventive Medicine, 1999, 29, 571-576.	1.6	3
104	Aerobic fitness in a population of independently living men and women aged 55???86 years. Medicine and Science in Sports and Exercise, 1999, 31, 1813.	0.2	165
105	O2 uptake kinetics after acetazolamide administration during moderate- and heavy-intensity exercise. Journal of Applied Physiology, 1998, 85, 1384-1393.	1.2	21
106	Dynamics of the Ventilatory Response to Step Changes in End-Tidal PCO2 in Older Humans. Applied Physiology, Nutrition, and Metabolism, 1997, 22, 368-383.	1.7	10
107	A Model of Oxygen Transport Capacity Changes for Independently Living Older Men and Women. Applied Physiology, Nutrition, and Metabolism, 1997, 22, 439-453.	1.7	24
108	The Influence of Age and Cardiorespiratory Fitness on Kinetics of Oxygen Uptake. Applied Physiology, Nutrition, and Metabolism, 1996, 21, 185-196.	1.7	83

7

#	Article	IF	CITATIONS
109	Peripheral Chemoreflex Drive in Moderate-Intensity Exercise. Applied Physiology, Nutrition, and Metabolism, 1996, 21, 285-300.	1.7	6
110	Exercise on-transient gas exchange kinetics are slowed as a function of age. Medicine and Science in Sports and Exercise, 1994, 26, 440???446.	0.2	85
111	Effects of aerobic endurance training on gas exchange kinetics of older men. Medicine and Science in Sports and Exercise, 1994, 26, 447???452.	0.2	67
112	Gas exchange dynamics with sinusoidal work in young and elderly women. Respiration Physiology, 1993, 91, 43-56.	2.8	35
113	Cardiac output and left ventricular function in response to exercise in older men. Canadian Journal of Physiology and Pharmacology, 1993, 71, 136-144.	0.7	28
114	Determinants of Independence in the Elderly. Applied Physiology, Nutrition, and Metabolism, 1993, 18, 243-254.	1.7	76
115	Metabolic Adaptations to Endurance Training in Older Individuals. Applied Physiology, Nutrition, and Metabolism, 1993, 18, 366-378.	1.7	15
116	Influence of ageing on aerobic parameters determined from a ramp test. European Journal of Applied Physiology and Occupational Physiology, 1992, 65, 138-143.	1.2	36
117	Cardiorespiratory adaptation with short term training in older men. European Journal of Applied Physiology and Occupational Physiology, 1992, 65, 203-208.	1.2	24
118	Oxygen Kinetics in the Elderly. , 1989, , 171-178.		2
119	Age-related changes in speed of walking. Medicine and Science in Sports and Exercise, 1988, 20, 161-166.	0.2	432