
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11324229/publications.pdf Version: 2024-02-01

HODEA RUS

#	Article	IF	CITATIONS
1	Regulator of Cell Cycle Protein (RGCC/RGC-32) Protects against Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 146-157.	2.9	6
2	RGC-32′ dual role in smooth muscle cells and atherogenesis. Clinical Immunology, 2022, 238, 109020.	3.2	3
3	Early versus delayed treatment with glatiramer acetate: Analysis of up to 27 years of continuous follow-up in a US open-label extension study. Multiple Sclerosis Journal, 2022, 28, 1729-1743.	3.0	1
4	RGC-32 Acts as a Hub to Regulate the Transcriptomic Changes Associated With Astrocyte Development and Reactive Astrocytosis. Frontiers in Immunology, 2021, 12, 705308.	4.8	1
5	JNK and phosphorylated Bcl-2 predict multiple sclerosis clinical activity and glatiramer acetate therapeutic response. Clinical Immunology, 2020, 210, 108297.	3.2	3
6	Histone Deacetylase SIRT1 Mediates C5b-9-Induced Cell Cycle in Oligodendrocytes. Frontiers in Immunology, 2020, 11, 619.	4.8	10
7	RGC-32 Regulates Generation of Reactive Astrocytes in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2020, 11, 608294.	4.8	4
8	RGC-32 and diseases: the first 20Âyears. Immunologic Research, 2019, 67, 267-279.	2.9	11
9	Role of C5b-9 and RGC-32 in Cancer. Frontiers in Immunology, 2019, 10, 1054.	4.8	16
10	Intracerebral matrix metalloproteinase 9 in fatal diabetic ketoacidosis. Experimental and Molecular Pathology, 2019, 108, 97-104.	2.1	5
11	RGC-32 regulates reactive astrocytosis and extracellular matrix deposition in experimental autoimmune encephalomyelitis. Immunologic Research, 2018, 66, 445-461.	2.9	16
12	Phosphorylated SIRT1 as a biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Experimental and Molecular Pathology, 2018, 105, 175-180.	2.1	18
13	Letter by Rus et al Regarding Article, "RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis― Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e96.	2.4	0
14	SIRT1 as a potential biomarker of response to treatment with glatiramer acetate in multiple sclerosis. Experimental and Molecular Pathology, 2017, 102, 191-197.	2.1	27
15	Markers of immune-mediated inflammation in the brains of young adults and adolescents with type 1 diabetes and fatal diabetic ketoacidosis. Is there a difference?. Experimental and Molecular Pathology, 2017, 102, 505-514.	2.1	4
16	The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunologic Research, 2017, 65, 1103-1109.	2.9	56
17	CTL-Promoting Effects of IL-21 Counteract Murine Lupus in the Parent→F1 Graft-versus-Host Disease Model. Journal of Immunology, 2016, 196, 1529-1540.	0.8	13
18	RGC-32 is expressed in the human atherosclerotic arterial wall: Role in C5b-9-induced cell proliferation and migration. Experimental and Molecular Pathology, 2016, 101, 221-230.	2.1	17

#	Article	IF	CITATIONS
19	The role of complement system in adipose tissue-related inflammation. Immunologic Research, 2016, 64, 653-664.	2.9	85
20	The role of complement activation in atherogenesis: the first 40Âyears. Immunologic Research, 2016, 64, 1-13.	2.9	52
21	RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Experimental and Molecular Pathology, 2015, 98, 328-337.	2.1	35
22	RGC-32 as a potential biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Experimental and Molecular Pathology, 2015, 99, 498-505.	2.1	16
23	Role of SIRT1 in autoimmune demyelination and neurodegeneration. Immunologic Research, 2015, 61, 187-197.	2.9	52
24	SIRT1 is decreased during relapses in patients with multiple sclerosis. Experimental and Molecular Pathology, 2014, 96, 139-148.	2.1	59
25	Role of C5b-9 complement complex and response gene to complement-32 (RGC-32) in cancer. Immunologic Research, 2013, 56, 109-121.	2.9	34
26	Dual role of Response gene to complement-32 in multiple sclerosis. Experimental and Molecular Pathology, 2013, 94, 17-28.	2.1	41
27	IL-21 Promotes Lupus-like Disease in Chronic Graft-versus-Host Disease through Both CD4 T Cell- and B Cell-Intrinsic Mechanisms. Journal of Immunology, 2012, 189, 1081-1093.	0.8	33
28	C5b-9-activated, Kv1.3 channels mediate oligodendrocyte cell cycle activation and dedifferentiation. Experimental and Molecular Pathology, 2011, 91, 335-345.	2.1	22
29	Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunologic Research, 2011, 51, 45-60.	2.9	242
30	Epigenetic modifications induced by RGC-32 in colon cancer. Experimental and Molecular Pathology, 2010, 88, 67-76.	2.1	41
31	FLT-3 expression and function on microglia in multiple sclerosis. Experimental and Molecular Pathology, 2010, 89, 109-116.	2.1	17
32	RGC-32 Mediates Transforming Growth Factor-Î ² -induced Epithelial-Mesenchymal Transition in Human Renal Proximal Tubular Cells. Journal of Biological Chemistry, 2009, 284, 9426-9432.	3.4	66
33	Neuroprotective effects of the complement terminal pathway during demyelination: Implications for oligodendrocyte survival. Journal of Neuroimmunology, 2009, 213, 3-11.	2.3	21
34	Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Experimental and Molecular Pathology, 2009, 86, 87-94.	2.1	57
35	TRAIL, DR4 and DR5 are upregulated in kidneys from patients with lupus nephritis and exert proliferative and proinflammatory effects. Clinical Immunology, 2009, 132, 32-42.	3.2	29
36	Role of response gene to complement 32 in diseases. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 115-122.	2.3	46

#	Article	IF	CITATIONS
37	B-cells and humoral immunity in multiple sclerosis. Implications for therapy. Immunologic Research, 2008, 40, 224-234.	2.9	12
38	Complement C5 regulates the expression of insulin-like growth factor binding proteins in chronic experimental allergic encephalomyelitis. Journal of Neuroimmunology, 2008, 203, 94-103.	2.3	18
39	Neuroinflammatory response of the choroid plexus epithelium in fatal diabetic ketoacidosis. Experimental and Molecular Pathology, 2007, 83, 65-72.	2.1	34
40	Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Experimental and Molecular Pathology, 2007, 83, 198-206.	2.1	24
41	The complement system in central nervous system diseases. Autoimmunity, 2006, 39, 395-402.	2.6	54
42	JNK1 activation mediates C5b-9-induced P0 mRNA instability and P0 gene expression in Schwann cells. Journal of the Peripheral Nervous System, 2006, 11, 77-87.	3.1	11
43	Complement activation in diabetic ketoacidosis brains. Experimental and Molecular Pathology, 2006, 80, 283-288.	2.1	35
44	Complement activation in autoimmune demyelination: Dual role in neuroinflammation and neuroprotection. Journal of Neuroimmunology, 2006, 180, 9-16.	2.3	35
45	Potassium channels Kv1.3 and Kv1.5 are expressed on blood-derived dendritic cells in the central nervous system. Annals of Neurology, 2006, 60, 118-127.	5.3	55
46	C5b-9-induced Endothelial Cell Proliferation and Migration Are Dependent on Akt Inactivation of Forkhead Transcription Factor FOXO1. Journal of Biological Chemistry, 2006, 281, 19009-19018.	3.4	81
47	Oligodendrocyte cell death in pathogenesis of multiple sclerosis: Protection of oligodendrocytes from apoptosis by complement. Journal of Rehabilitation Research and Development, 2006, 43, 123.	1.6	54
48	C5b-9 Complement Complex in Autoimmune Demyelination: Dual Role in Neuroinflammation and Neuroprotection. , 2006, 586, 139-151.		12
49	C5b-9 Terminal Complex Protects Oligodendrocytes from Apoptotic Cell Death by Inhibiting Caspase-8 Processing and Up-Regulating FLIP. Journal of Immunology, 2006, 176, 3173-3180.	0.8	54
50	The Role of C5b-9 Terminal Complement Complex in Activation of the Cell Cycle and Transcription. Immunologic Research, 2005, 31, 37-46.	2.9	69
51	The Role of the Complement System in Innate Immunity. Immunologic Research, 2005, 33, 103-112.	2.9	192
52	Overexpression of RGC-32 in colon cancer and other tumors. Experimental and Molecular Pathology, 2005, 78, 116-122.	2.1	52
53	Both apoptosis and complement membrane attack complex deposition are major features of murine acute graft-vshost disease. Experimental and Molecular Pathology, 2005, 79, 136-145.	2.1	34
54	C5bâ€9 complement complex in autoimmune demyelination and multiple sclerosis: Dual role in neuroinflammation and neuroprotection. Annals of Medicine, 2005, 37, 97-104.	3.8	35

HOREA RUS

#	Article	IF	CITATIONS
55	The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11094-11099.	7.1	172
56	Effects of Complement C5 on Apoptosis in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 172, 5702-5706.	0.8	41
57	C5b-9 terminal complement complex assembly on apoptotic cells in human arterial wall with atherosclerosis. Experimental and Molecular Pathology, 2004, 76, 17-23.	2.1	33
58	The Role of Complement Activation in Atherosclerosis. Immunologic Research, 2004, 30, 073-080.	2.9	92
59	Effects of Membrane Attack Complex of Complement on Apoptosis in Experimental Autoimmune Encephalomyelitis. Annals of the New York Academy of Sciences, 2003, 1010, 530-533.	3.8	16
60	Sublytic terminal complement attack induces c-fos transcriptional activation in myotubes. Journal of Neuroimmunology, 2003, 142, 58-66.	2.3	11
61	Pathogenic T cells in murine lupus exhibit spontaneous signaling activity through phosphatidylinositol 3â€kinase and mitogenâ€activated protein kinase pathways. Arthritis and Rheumatism, 2003, 48, 1071-1079.	6.7	31
62	Complement C5 in Experimental Autoimmune Encephalomyelitis (EAE) Facilitates Remyelination and Prevents Gliosis. American Journal of Pathology, 2003, 163, 1069-1080.	3.8	65
63	Association of Complement Inhibitors With Connective Tissue Matrix in Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1478-1478.	2.4	2
64	RGC-32 Increases p34CDC2 Kinase Activity and Entry of Aortic Smooth Muscle Cells into S-phase. Journal of Biological Chemistry, 2002, 277, 502-508.	3.4	101
65	The Complement System in Central Nervous System Diseases. Immunologic Research, 2001, 24, 79-86.	2.9	26
66	Mechanisms of Signal Transduction Activated by Sublytic Assembly of Terminal Complement Complexes on Nucleated Cells. Immunologic Research, 2001, 24, 191-200.	2.9	61
67	C5b-9 Terminal Complement Complex Protects Oligodendrocytes from Death by Regulating Bad Through Phosphatidylinositol 3-Kinase/Akt Pathway. Journal of Immunology, 2001, 167, 2305-2311.	0.8	105
68	Terminal complement complexes concomitantly stimulate proliferation and rescue of Schwann cells from apoptosis. , 2000, 30, 187-198.		43
69	Inflammatory Response in Unstable Angina. Circulation, 1999, 100, e98.	1.6	7
70	Tyrosine phosphorylation and activation of Janus kinase 1 and STAT3 by sublytic C5b-9 complement complex in aortic endothelial cells. Immunopharmacology, 1999, 42, 187-193.	2.0	33
71	Complement activation and atherosclerosis. Molecular Immunology, 1999, 36, 949-955.	2.2	86
72	Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells. Atherosclerosis, 1999, 142, 47-56.	0.8	109

#	Article	IF	CITATIONS
73	Molecular Cloning and Characterization of RGC-32, a Novel Gene Induced by Complement Activation in Oligodendrocytes. Journal of Biological Chemistry, 1998, 273, 26977-26981.	3.4	85
74	Complement System in Central Nervous System Disorders. , 1998, , 499-525.		10
75	Terminal complement complexes induce cell cycle entry in oligodendrocytes through mitogen activated protein kinase pathway. Immunopharmacology, 1997, 38, 177-187.	2.0	42
76	Localization of the terminal C5b-9 complement complex in the human aortic atherosclerotic wall. Immunology Letters, 1985, 10, 109-114.	2.5	24