Siyuan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11324129/publications.pdf

Version: 2024-02-01

20	1,013	14	20
papers	citations	h-index	g-index
20	20	20	1250
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chemistry, 2022, 381, 131801.	8.2	23
2	Microfluidic Colorimetric Biosensors Based on MnO ₂ Nanozymes and Convergence–Divergence Spiral Micromixers for Rapid and Sensitive Detection of <i>Salmonella</i> ACS Sensors, 2021, 6, 2883-2892.	7.8	73
3	A Fluorescent Biosensor for Sensitive Detection of Salmonella Typhimurium Using Low-Gradient Magnetic Field and Deep Learning via Faster Region-Based Convolutional Neural Network. Biosensors, 2021, 11, 447.	4.7	9
4	Automatic and multi-channel detection of bacteria on a slidable centrifugal disc based on FTA card nucleic acid extraction and recombinase aided amplification. Lab on A Chip, 2021, 22, 80-89.	6.0	15
5	Optical Biosensor for Rapid Detection of <i>Salmonella typhimurium</i> Based on Porous Gold@Platinum Nanocatalysts and a 3D Fluidic Chip. ACS Sensors, 2020, 5, 65-72.	7.8	62
6	A lab-on-chip device for the sample-in-result-out detection of viable <i>Salmonella</i> using loop-mediated isothermal amplification and real-time turbidity monitoring. Lab on A Chip, 2020, 20, 2296-2305.	6.0	66
7	A Rapid and Sensitive Salmonella Biosensor Based on Viscoelastic Inertial Microfluidics. Sensors, 2020, 20, 2738.	3.8	15
8	Combining impedance biosensor with immunomagnetic separation for rapid screening of Salmonella in poultry supply chains. Poultry Science, 2020, 99, 1606-1614.	3.4	30
9	A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosensors and Bioelectronics, 2019, 140, 111333.	10.1	133
10	Impacts of the inclusion of various fruit pomace types on the expansion of corn starch extrudates. LWT - Food Science and Technology, 2019, 110, 223-230.	5.2	42
11	A capillary biosensor for rapid detection of Salmonella using Fe-nanocluster amplification and smart phone imaging. Biosensors and Bioelectronics, 2019, 127, 142-149.	10.1	51
12	A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors and Bioelectronics, 2019, 124-125, 143-149.	10.1	237
13	Waxy Wheat Flour as a Freeze-Thaw Stable Ingredient Through Rheological Studies. Food and Bioprocess Technology, 2017, 10, 1281-1296.	4.7	10
14	Impacts of the Particle Sizes and Levels of Inclusions of Cherry Pomace on the Physical and Structural Properties of Direct Expanded Corn Starch. Food and Bioprocess Technology, 2017, 10, 394-406.	4.7	51
15	A Comparative Study of Changes in Microbiological Quality and Physicochemical Properties of N2-Infused and N2-Degassed Banana Smoothies After High Pressure Processing. Food and Bioprocess Technology, 2015, 8, 333-342.	4.7	23
16	Chemical Composition and Immunomodulatory Activity of Mycelia of the Hairy Bracket Mushroom, Trametes hirsuta (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 2015, 17, 267-276.	1.5	7
17	Effects of Anti-browning Combinations of Ascorbic Acid, Citric Acid, Nitrogen and Carbon Dioxide on the Quality of Banana Smoothies. Food and Bioprocess Technology, 2014, 7, 161-173.	4.7	44
18	Inactivation of naturally occurring microbiota in cucumber juice by pressure treatment. International Journal of Food Microbiology, 2014, 174, 12-18.	4.7	19

SIYUAN WANG

#	Article	IF	CITATIONS
19	Comparing the effects of high hydrostatic pressure and thermal pasteurization combined with nisin on the quality of cucumber juice drinks. Innovative Food Science and Emerging Technologies, 2013, 17, 27-36.	5.6	99
20	Isolation and identification of high pressureâ€resistant bacteria naturally contaminating strawberry pulp. International Journal of Food Science and Technology, 2012, 47, 2620-2626.	2.7	4