
Neil D Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11323706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Depo Medroxyprogesterone (DMPA) Promotes Papillomavirus Infections but Does Not Accelerate Disease Progression in the Anogenital Tract of a Mouse Model. Viruses, 2022, 14, 980.	1.5	6
2	RG2-VLP: a Vaccine Designed to Broadly Protect against Anogenital and Skin Human Papillomaviruses Causing Human Cancer. Journal of Virology, 2022, 96, .	1.5	9
3	The environmental pollutant and tobacco smoke constituent dibenzo[def,p]chrysene is a co-factor for malignant progression of mouse oral papillomavirus infections. Chemico-Biological Interactions, 2021, 333, 109321.	1.7	5
4	High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility. Scientific Reports, 2021, 11, 3498.	1.6	19
5	Monoclonal Antibodies to S and N SARS-CoV-2 Proteins as Probes to Assess Structural and Antigenic Properties of Coronaviruses. Viruses, 2021, 13, 1899.	1.5	4
6	Comprehensive Assessment of the Antigenic Impact of Human Papillomavirus Lineage Variation on Recognition by Neutralizing Monoclonal Antibodies Raised against Lineage A Major Capsid Proteins of Vaccine-Related Genotypes. Journal of Virology, 2020, 94, .	1.5	7
7	An Integrated Approach for Preventing Oral Cavity and Oropharyngeal Cancers: Two Etiologies with Distinct and Shared Mechanisms of Carcinogenesis. Cancer Prevention Research, 2020, 13, 649-660.	0.7	13
8	Antibody-Mediated Immune Subset Depletion Modulates the Immune Response in a Rabbit (Oryctolagus) Tj ETQc	10.0.0 rgB ⁻ 0.4	Г /Overlock
0	Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. FLife, 2020, 9	2.0	0

10	Papillomavirus can be transmitted through the blood and produce infections in blood recipients: Evidence from two animal models. Emerging Microbes and Infections, 2019, 8, 1108-1121.	3.0	31
11	BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Research, 2018, 154, 158-165.	1.9	16
12	Cryoelectron Microscopy Maps of Human Papillomavirus 16 Reveal L2 Densities and Heparin Binding Site. Structure, 2017, 25, 253-263.	1.6	56
13	Recent advances in preclinical model systems for papillomaviruses. Virus Research, 2017, 231, 108-118.	1.1	41
14	Mouse papillomavirus infection persists in mucosal tissues of an immunocompetent mouse strain and progresses to cancer. Scientific Reports, 2017, 7, 16932.	1.6	33
15	Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17–36. Viruses, 2017, 9, 336.	1.5	10
16	High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16. Viruses, 2017, 9, 374.	1.5	11
17	Mouse papillomavirus infections spread to cutaneous sites with progression to malignancy. Journal of General Virology, 2017, 98, 2520-2529.	1.3	22
18	HPV disease transmission protection and control. Microbial Cell, 2016, 3, 475-489.	1.4	19

#	Article	IF	CITATIONS
19	Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles. Journal of Virology, 2016, 90, 6314-6325.	1.5	29
20	Mouse papillomavirus MmuPV1 infects oral mucosa and preferentially targets the base of the tongue. Virology, 2016, 488, 73-80.	1.1	32
21	Durable immunity to oncogenic human papillomaviruses elicited by adjuvanted recombinant Adeno-associated virus-like particle immunogen displaying L2 17–36 epitopes. Vaccine, 2015, 33, 5553-5563.	1.7	19
22	A Novel Pre-Clinical Murine Model to Study the Life Cycle and Progression of Cervical and Anal Papillomavirus Infections. PLoS ONE, 2015, 10, e0120128.	1.1	36
23	A Cryo-Electron Microscopy Study Identifies the Complete H16.V5 Epitope and Reveals Global Conformational Changes Initiated by Binding of the Neutralizing Antibody Fragment. Journal of Virology, 2015, 89, 1428-1438.	1.5	54
24	Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization. Virology, 2015, 483, 253-263.	1.1	47
25	HPV Binding Assay to Laminin-332/Integrin α6β4 on Human Keratinocytes. Methods in Molecular Biology, 2015, 1249, 53-66.	0.4	4
26	Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model. Journal of General Virology, 2015, 96, 3554-3565.	1.3	38
27	SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS ONE, 2015, 10, e0126576.	1.1	20
28	Vaccines and Immunization against Human Papillomavirus. Current Problems in Dermatology, 2014, 45, 252-264.	0.8	3
29	Formulation of cidofovir improves the anti-papillomaviral activity of topical treatments in the CRPV/rabbit model. Antiviral Research, 2014, 108, 148-155.	1.9	5
30	Roles for Human Papillomavirus Type 16 L1 Cysteine Residues 161, 229, and 379 in Genome Encapsidation and Capsid Stability. PLoS ONE, 2014, 9, e99488.	1.1	9
31	Long-peptide therapeutic vaccination against CRPV-induced papillomas in HLA-A2.1 transgenic rabbits. Trials in Vaccinology, 2014, 3, 134-142.	1.2	12
32	Pathogenesis of Infection by Human Papillomavirus. Current Problems in Dermatology, 2014, 45, 47-57.	0.8	9
33	Multivalent Human Papillomavirus L1 DNA Vaccination Utilizing Electroporation. PLoS ONE, 2013, 8, e60507.	1.1	15
34	Human papillomavirus type 18 chimeras containing the L2/L1 capsid genes from evolutionarily diverse papillomavirus types generate infectious virus. Virus Research, 2011, 160, 246-255.	1.1	7
35	Papillomavirus capsid proteins mutually impact structure. Virology, 2011, 412, 378-383.	1.1	10
36	Differentiation-Dependent Interpentameric Disulfide Bond Stabilizes Native Human Papillomavirus Type 16. PLoS ONE, 2011, 6, e22427.	1.1	31

#	Article	IF	CITATIONS
37	Binding and neutralization characteristics of a panel of monoclonal antibodies to human papillomavirus 58. Journal of General Virology, 2010, 91, 1834-1839.	1.3	23
38	Differential binding patterns to host cells associated with particles of several human alphapapillomavirus types. Journal of General Virology, 2010, 91, 531-540.	1.3	16
39	Identification of species-specific and cross-reactive epitopes in human polyomavirus capsids using monoclonal antibodies. Journal of General Virology, 2009, 90, 634-639.	1.3	26
40	Tissue-Spanning Redox Gradient-Dependent Assembly of Native Human Papillomavirus Type 16 Virions. Journal of Virology, 2009, 83, 10515-10526.	1.5	77
41	Overlapping and independent structural roles for human papillomavirus type 16 L2 conserved cysteines. Virology, 2009, 393, 295-303.	1.1	29
42	Reactivity pattern of 92 monoclonal antibodies with 15 human papillomavirus types. Journal of General Virology, 2008, 89, 117-129.	1.3	64
43	Protein- and DNA-Based Active Immunotherapy Targeting Interleukin-13 Receptor Alpha2. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 581-589.	0.7	16
44	Detection of L1, infectious virions and anti-L1 antibody in domestic rabbits infected with cottontail rabbit papillomavirus. Journal of General Virology, 2007, 88, 3286-3293.	1.3	16
45	Binding and neutralization efficiencies of monoclonal antibodies, Fab fragments, and scFv specific for L1 epitopes on the capsid of infectious HPV particles. Virology, 2007, 361, 435-446.	1.1	43
46	Crystal Structures of Four Types of Human Papillomavirus L1 Capsid Proteins. Journal of Biological Chemistry, 2007, 282, 31803-31811.	1.6	161
47	A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2. Journal of Virology, 2007, 81, 13927-13931.	1.5	196
48	Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology, 2006, 347, 147-159.	1.1	89
49	Keratinocyte-Secreted Laminin 5 Can Function as a Transient Receptor for Human Papillomaviruses by Binding Virions and Transferring Them to Adjacent Cells. Journal of Virology, 2006, 80, 8940-8950.	1.5	135
50	Preclinical Model To Test Human Papillomavirus Virus (HPV) Capsid Vaccines In Vivo Using Infectious HPV/Cottontail Rabbit Papillomavirus Chimeric Papillomavirus Particles. Journal of Virology, 2006, 80, 12393-12397.	1.5	42
51	Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology, 2005, 337, 365-372.	1.1	158
52	Large cutaneous rabbit papillomas that persist during cyclosporin A treatment can regress spontaneously after cessation of immunosuppression. Journal of General Virology, 2005, 86, 55-63.	1.3	17
53	Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology, 2004, 319, 152-161.	1.1	63
54	Differential antibody responses to a distinct region of human papillomavirus minor capsid proteins. Vaccine, 2004, 22, 670-680.	1.7	18

#	Article	IF	CITATIONS
55	Quantitative RT-PCR assay for HPV infection in cultured cells. Journal of Virological Methods, 2003, 111, 135-144.	1.0	30
56	Chimeric Human Papillomavirus Type 16 (HPV-16) L1 Particles Presenting the Common Neutralizing Epitope for the L2 Minor Capsid Protein of HPV-6 and HPV-16. Journal of Virology, 2003, 77, 8386-8393.	1.5	76
57	Human papillomavirus type 6 virus-like particles present overlapping yet distinct conformational epitopes. Journal of General Virology, 2003, 84, 1493-1497.	1.3	9
58	Further Evidence that Papillomavirus Capsids Exist inTwo DistinctConformations. Journal of Virology, 2003, 77, 12961-12967.	1.5	112
59	Protective Immunity to Rabbit Oral and Cutaneous Papillomaviruses by Immunization with Short Peptides of L2, the Minor Capsid Protein. Journal of Virology, 2002, 76, 9798-9805.	1.5	98
60	Identification of Two Cross-Neutralizing Linear Epitopes within the L1 Major Capsid Protein of Human Papillomaviruses. Journal of Virology, 2002, 76, 6480-6486.	1.5	112
61	IL-13Rα2 is a Glioma-Restricted Receptor for Interleukin-13. Neoplasia, 2002, 4, 388-399.	2.3	132
62	Immunological analyses of human papillomavirus capsids. Vaccine, 2001, 19, 1783-1793.	1.7	132
63	Hybrid Papillomavirus L1 Molecules Assemble into Virus-like Particles That Reconstitute Conformational Epitopes and Induce Neutralizing Antibodies to Distinct HPV Types. Virology, 2001, 291, 324-334.	1.1	121
64	Papillomavirus Microbicidal Activities of High-Molecular-Weight Cellulose Sulfate, Dextran Sulfate, and Polystyrene Sulfonate. Antimicrobial Agents and Chemotherapy, 2001, 45, 3427-3432.	1.4	101
65	Combination Treatment with Intralesional Cidofovir and Viral-DNA Vaccination Cures Large Cottontail Rabbit Papillomavirus-Induced Papillomas and Reduces Recurrences. Antimicrobial Agents and Chemotherapy, 2001, 45, 1201-1209.	1.4	32
66	Neutralization of Human Papillomavirus (HPV) Pseudovirions: A Novel and Efficient Approach to Detect and Characterize HPV Neutralizing Antibodies. Virology, 2000, 278, 570-577.	1.1	53
67	Detection of Serologic Neutralizing Antibodies against HPV-11 in Patients with Condyloma Acuminata and Cervical Dysplasia Using anin VitroAssay. Gynecologic Oncology, 1997, 66, 295-299.	0.6	12
68	Conserved Features in Papillomavirus and Polyomavirus Capsids. Journal of Molecular Biology, 1996, 259, 249-263.	2.0	114
69	Surface Conformational and Linear Epitopes on HPV-16 and HPV-18 L1 Virus-like Particles as Defined by Monoclonal Antibodies. Virology, 1996, 223, 174-184.	1.1	247
70	Monoclonal Antibodies to HPV-6 L1 Virus-like Particles Identify Conformational and Linear Neutralizing Epitopes on HPV-11 in Addition to Type-Specific Epitopes on HPV-6. Virology, 1996, 224, 477-486.	1.1	112
71	The Natural History of Human Papillomavirus Type 16 Capsid Antibodies among a Cohort of University Women. Journal of Infectious Diseases, 1996, 174, 927-936.	1.9	294
72	Postattachment Neutralization of Papillomaviruses by Monoclonal and Polyclonal Antibodies. Virology, 1995, 207, 136-142.	1.1	69

#	Article	IF	CITATIONS
73	Human Papillomavirus Types 6 and 11 Have Antigenically Distinct Strongly Immunogenic Conformationally Dependent Neutralizing Epitopes. Virology, 1994, 205, 329-335.	1.1	137
74	Neutralization of CRPV infectivity by monoclonal antibodies that identify conformational epitopes on intact virions. Virus Research, 1991, 21, 169-179.	1.1	52
75	The open reading frame L2 of cottontail rabbit papillomavirus contains antibody-inducing neutralizing epitopes. Virology, 1991, 181, 572-579.	1.1	157
76	Morphometric analysis and identification of infiltrating leucocytes in regressing and progressing shope rabbit papillomas. International Journal of Cancer, 1991, 49, 919-923.	2.3	57
77	Immunological cross-reactivity to laboratory-produced HPV-11 virions of polysera raised against bacterially derived fusion proteins and synthetic peptides of HPV-6b and HPV-16 capsid proteins. Virology, 1990, 175, 1-9.	1.1	43
78	Systemic adoptive transfer of immunity and low-dose irradiation eradicate metastases of 13762a rat mammary adenocarcinoma. International Journal of Cancer, 1985, 36, 217-224.	2.3	6