Yelena Bormashenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11323279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinspired oxygen selective membrane for Zn–air batteries. Journal of Materials Science, 2021, 56, 9382-9394.	1.7	8
2	Cold plasma hydrophilization of soy protein isolate and milk protein concentrate enables manufacturing of surfactant-free water suspensions. Part I: Hydrophilization of food powders using cold plasma. Innovative Food Science and Emerging Technologies, 2021, 72, 102759.	2.7	21
3	Investigation of the Impact of Cold Plasma Treatment on the Chemical Composition and Wettability of Medical Grade Polyvinylchloride. Applied Sciences (Switzerland), 2021, 11, 300.	1.3	6
4	Effects of Atmospheric Plasma Corona Discharges on Soil Bacteria Viability. Microorganisms, 2020, 8, 704.	1.6	9
5	Formation of Hierarchical Porous Films with Breath-Figures Self-Assembly Performed on Oil-Lubricated Substrates. Materials, 2019, 12, 3051.	1.3	8
6	Toward an Understanding of Magnetic Displacement of Floating Diamagnetic Bodies, I: Experimental Findings. Langmuir, 2018, 34, 6388-6395.	1.6	18
7	Self-Propulsion of Water-Supported Liquid Marbles Filled with Sulfuric Acid. Journal of Physical Chemistry B, 2018, 122, 7936-7942.	1.2	25
8	Magnetically inspired deformation of the liquid/vapor interface drives soap bubbles. Surface Innovations, 2018, 6, 231-236.	1.4	14
9	Superposition of Translational and Rotational Motions under Self-Propulsion of Liquid Marbles Filled with Aqueous Solutions of Camphor. Langmuir, 2017, 33, 13234-13241.	1.6	18
10	Plasma treatment switches the regime of wetting and floating of pepper seeds. Colloids and Surfaces B: Biointerfaces, 2017, 157, 417-423.	2.5	24
11	Camphor-Engine-Driven Micro-Boat Guides Evolution of Chemical Gardens. Scientific Reports, 2017, 7, 3930.	1.6	12
12	Under-Liquid Self-Assembly of Submerged Buoyant Polymer Particles. Langmuir, 2016, 32, 5714-5720.	1.6	3
13	Superoleophobic Surfaces Obtained via Hierarchical Metallic Meshes. Langmuir, 2016, 32, 4134-4140.	1.6	31
14	How to grow a movable mini-garden in a droplet: Growing chemical gardens in a water and aqueous ethanol solutions droplets deposited on a superhydrophobic surface. Colloids and Interface Science Communications, 2015, 7, 12-15.	2.0	3
15	Elastic properties of liquid marbles. Colloid and Polymer Science, 2015, 293, 2157-2164.	1.0	47
16	Progress in low voltage reversible electrowetting with lubricated polymer honeycomb substrates. RSC Advances, 2015, 5, 32491-32496.	1.7	23
17	Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). Journal of Experimental Botany, 2015, 66, 4013-4021.	2.4	130
18	Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow. Journal of Physical Chemistry C, 2015, 119, 9910-9915.	1.5	127

Yelena Bormashenko

#	Article	IF	CITATIONS
19	Robust Technique Allowing the Manufacture of Superoleophobic (Omniphobic) Metallic Surfaces. Advanced Engineering Materials, 2014, 16, 1127-1132.	1.6	26
20	Low voltage reversible electrowetting exploiting lubricated polymer honeycomb substrates. Applied Physics Letters, 2014, 104, .	1.5	34
21	Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 2013, 270, 98-103.	3.1	53
22	Submerged (Under-Liquid) Floating of Light Objects. Langmuir, 2013, 29, 10700-10704.	1.6	5
23	Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds. Scientific Reports, 2012, 2, 741.	1.6	264
24	Honeycomb structures obtained with breath figures self-assembly allow water/oil separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 394-398.	2.3	41
25	Non-Stick Droplet Surgery with a Superhydrophobic Scalpel. Langmuir, 2011, 27, 3266-3270.	1.6	44
26	Janus Droplets: Liquid Marbles Coated with Dielectric/Semiconductor Particles. Langmuir, 2011, 27, 7-10.	1.6	107
27	On the mechanism of patterning in rapidly evaporated polymer solutions: Is temperature-gradient-driven Marangoni instability responsible for the large-scale patterning?. Journal of Colloid and Interface Science, 2010, 343, 602-607.	5.0	36
28	On the Nature of the Friction between Nonstick Droplets and Solid Substrates. Langmuir, 2010, 26, 12479-12482.	1.6	54
29	On the Mechanism of Floating and Sliding of Liquid Marbles. ChemPhysChem, 2009, 10, 654-656.	1.0	102
30	Water rolling and floating upon water: Marbles supported by a water/marble interface. Journal of Colloid and Interface Science, 2009, 333, 419-421.	5.0	70
31	Shape, Vibrations, and Effective Surface Tension of Water Marbles. Langmuir, 2009, 25, 1893-1896.	1.6	100
32	Mesoscopic Patterning in Evaporated Polymer Solutions: Poly(ethylene glycol) and Roomâ€Temperatureâ€Vulcanized Polyorganosilanes/â€siloxanes Promote Formation of Honeycomb Structures. Macromolecular Chemistry and Physics, 2008, 209, 567-576.	1.1	40
33	Freeâ€Standing, Thermostable, Micrometerâ€Scale Honeycomb Polymer Films and their Properties. Macromolecular Materials and Engineering, 2008, 293, 872-877.	1.7	26
34	On the role of the Plateau borders in the pattern formation occurring in thin evaporated polymer layers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 245-248.	2.3	3
35	New Investigations on Ferrofluidics: Ferrofluidic Marbles and Magnetic-Field-Driven Drops on Superhydrophobic Surfaces. Langmuir, 2008, 24, 12119-12122.	1.6	187
36	Superhydrophobic Metallic Surfaces and Their Wetting Properties. Journal of Adhesion Science and Technology, 2008, 22, 379-385.	1.4	35

#	Article	IF	CITATIONS
37	Contact Angle Hysteresis on Polymer Substrates Established with Various Experimental Techniques, Its Interpretation, and Quantitative Characterization. Langmuir, 2008, 24, 4020-4025.	1.6	101
38	Environmental Scanning Electron Microscopy Study of the Fine Structure of the Triple Line and Cassieâ~'Wenzel Wetting Transition for Sessile Drops Deposited on Rough Polymer Substrates. Langmuir, 2007, 23, 4378-4382.	1.6	70
39	Vibration-induced Cassie-Wenzel wetting transition on rough surfaces. Applied Physics Letters, 2007, 90, 201917.	1.5	148
40	Formation of Films on Water Droplets Floating on a Polymer Solution Surface. Macromolecular Chemistry and Physics, 2007, 208, 702-709.	1.1	25
41	Self-assembled patterns obtained with evaporated polymer solutions and pre-stretched polymer substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 253-256.	2.3	7
42	Droplet behavior on flat and textured surfaces: Co-occurrence of Deegan outward flow with Marangoni solute instability. Journal of Colloid and Interface Science, 2007, 306, 128-132.	5.0	22
43	Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition. Journal of Colloid and Interface Science, 2007, 311, 212-216.	5.0	196
44	Template-assisted crystallization and colloidal self-assembly with use of the polymer micrometrically scaled honeycomb template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 273-279.	2.3	9
45	Template-assisted growth of chemical gardens: Formation of dendrite structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 245-249.	2.3	9
46	Self-assembly in evaporated polymer solutions: Influence of the solution concentration. Journal of Colloid and Interface Science, 2006, 297, 534-540.	5.0	56
47	Patterning in rapidly evaporated polymer solutions: Formation of annular structures under evaporation of the poor solvent. Journal of Colloid and Interface Science, 2006, 300, 293-297.	5.0	16
48	Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie–Baxter wetting hypothesis. Journal of Colloid and Interface Science, 2006, 302, 308-311.	5.0	74
49	Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces. Langmuir, 2006, 22, 9982-9985.	1.6	219
50	Mesoscopic and submicroscopic patterning in thin polymer films: Impact of the solvent. Materials Letters, 2005, 59, 2461-2464.	1.3	47
51	Mesoscopic Patterning in Thin Polymer Films Formed under the Fast Dip-Coating Process. Macromolecular Materials and Engineering, 2005, 290, 114-121.	1.7	55
52	Self-assembled honeycomb polycarbonate films deposited on polymer piezoelectric substrates and their applications. Polymers for Advanced Technologies, 2005, 16, 299-304.	1.6	41
53	Mesoscopic Patterning in Evaporated Polymer Solutions:Â New Experimental Data and Physical Mechanisms. Langmuir, 2005, 21, 9604-9609.	1.6	51
54	Wetting of Composite Surfaces: When and Why Is the Area Far from The Triple Line Important?. Journal of Physical Chemistry C, 0, , 130911133825002.	1.5	7