Zhongda Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1132220/publications.pdf Version: 2024-02-01

ZHONCOA SUN

#	Article	IF	CITATIONS
1	A Piezoelectric Bulk Wave Resonant Humidity Sensor for Noncontact Human-Machine Interaction. , 2022, , .		Ο
2	Artificial Intelligenceâ€Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 2022, 4, .	3.3	146
3	Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Materials Au, 2022, 2, 394-435.	2.6	31
4	Noncontact Human–Machine Interface Using Complementary Information Fusion Based on MEMS and Triboelectric Sensors. Advanced Science, 2022, 9, e2201056.	5.6	36
5	Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface. Nano Energy, 2021, 81, 105582.	8.2	66
6	Smart Soft Robotic Manipulator for Artificial Intelligence of Things (AIOT) Based Unmanned Shop Applications. , 2021, , .		2
7	Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research, 2021, 2021, 6849171.	2.8	75
8	Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nature Communications, 2021, 12, 2692.	5.8	107
9	Artificial Intelligence of Things (AloT) Enabled Virtual Shop Applications Using Selfâ€Powered Sensor Enhanced Soft Robotic Manipulator. Advanced Science, 2021, 8, e2100230.	5.6	138
10	Haptic-Feedback Ring Enabled Human-Machine Interface (HMI) Aiming at Immersive Virtual Reality Experience. , 2021, , .		3
11	Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis. Science Bulletin, 2021, 66, 1176-1185.	4.3	50
12	Magnetic-interaction assisted hybridized triboelectric-electromagnetic nanogenerator for advanced human-machine interfaces. Nano Energy, 2021, 86, 106154.	8.2	45
13	Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Cloves to Al/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Advances, 2021, 1, 81-121.	3.6	59
14	Exploration of Multi-dimensional Sensing in Human Machine Interactions. , 2021, , .		0
15	Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy, 2020, 67, 104266.	8.2	101
16	Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines, 2020, 11, 7.	1.4	216
17	Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InformaÄnÃ-Materiály, 2020, 2, 1131-1162.	8.5	343
18	Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nature Communications, 2020, 11, 5381.	5.8	363

ZHONGDA SUN

#	Article	IF	CITATIONS
19	Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. Npj Flexible Electronics, 2020, 4, .	5.1	213
20	Deep learning enabled smart mats as a scalable floor monitoring system. Nature Communications, 2020, 11, 4609.	5.8	195
21	Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Science Advances, 2020, 6, eaaz8693.	4.7	419
22	Wearable Triboelectric–Human–Machine Interface (THMI) Using Robust Nanophotonic Readout. ACS Nano, 2020, 14, 8915-8930.	7.3	121
23	Wearable Triboelectric/Aluminum Nitride Nanoâ€Energyâ€Nanoâ€System with Selfâ€Sustainable Photonic Modulation and Continuous Force Sensing. Advanced Science, 2020, 7, 1903636.	5.6	66
24	Machine Learning Glove Using Selfâ€Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications. Advanced Science, 2020, 7, 2000261.	5.6	290
25	Sensory-Glove-Based Human Machine Interface for Augmented Reality (AR) Applications. , 2020, , .		9
26	Self-Powered Wireless IoT Sensor Based on Triboelectric Textile. , 2020, , .		4
27	Self-Powered Intuitive Control Interface Towards Diversified Gaming, AI, and Online Shopping Applications. , 2019, , .		1
28	Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy, 2019, 58, 641-651.	8.2	140