
Michael Costigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11321779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mendelian etiologies identified with whole exome sequencing in cerebral palsy. Annals of Clinical and Translational Neurology, 2022, 9, 193-205.	1.7	23
2	Topoisomerase I inhibition and peripheral nerve injury induce DNA breaks and ATF3-associated axon regeneration in sensory neurons. Cell Reports, 2021, 36, 109666.	2.9	16
3	Sepiapterin Reductase Inhibition Leading to Selective Reduction of Inflammatory Joint Pain in Mice and Increased Urinary Sepiapterin Levels in Humans and Mice. Arthritis and Rheumatology, 2020, 72, 57-66.	2.9	13
4	Cytotoxic Immunity in Peripheral Nerve Injury and Pain. Frontiers in Neuroscience, 2020, 14, 142.	1.4	49
5	Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain. Pain, 2020, 161, 379-387.	2.0	25
6	Intracolonic Mustard Oil Induces Visceral Pain in Mice by TRPA1-Dependent and -Independent Mechanisms: Role of Tissue Injury and P2X Receptors. Frontiers in Pharmacology, 2020, 11, 613068.	1.6	6
7	Pain Analgesic Developments in the Genomic Era. , 2020, , 209-237.		Ο
8	Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell, 2019, 176, 716-728.e18.	13.5	98
9	The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron, 2019, 104, 637-653.	3.8	71
10	Reading and writing: the evolution of molecular pain genetics. Pain, 2019, 160, 2177-2185.	2.0	2
11	Diltiazem Promotes Regenerative Axon Growth. Molecular Neurobiology, 2019, 56, 3948-3957.	1.9	19
12	Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling. Cell Reports, 2018, 22, 1301-1312.	2.9	142
13	Combining Human and Rodent Genetics to Identify New Analgesics. Neuroscience Bulletin, 2018, 34, 143-155.	1.5	15
14	Neuropathic pain drives anxiety behavior in mice, results consistent with anxiety levels in diabetic neuropathy patients. Pain Reports, 2018, 3, e651.	1.4	45
15	The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 2018, 563, 564-568.	13.7	174
16	Up–Down Reader: An Open Source Program for Efficiently Processing 50% von Frey Thresholds. Frontiers in Pharmacology, 2018, 9, 433.	1.6	44
17	CNS repair and axon regeneration: Using genetic variation to determine mechanisms. Experimental Neurology, 2017, 287, 409-422.	2.0	24
18	Enhanced Neuronal Regeneration in the CAST/Ei Mouse Strain Is Linked to Expression of Differentiation Markers after Injury. Cell Reports, 2017, 20, 1136-1147.	2.9	26

MICHAEL COSTIGAN

#	Article	IF	CITATIONS
19	Time-Resolved Fast Mammalian Behavior Reveals the Complexity of Protective Pain Responses. Cell Reports, 2017, 20, 89-98.	2.9	41
20	Arachidonic acid containing phosphatidylcholine increases due to microglial activation in ipsilateral spinal dorsal horn following spared sciatic nerve injury. PLoS ONE, 2017, 12, e0177595.	1.1	13
21	A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron, 2016, 89, 956-970.	3.8	314
22	Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS. Neuron, 2015, 86, 1215-1227.	3.8	87
23	Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron, 2015, 86, 1393-1406.	3.8	101
24	The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell–derived leukocyte elastase. Nature Medicine, 2015, 21, 518-523.	15.2	182
25	Transcriptomic Approaches to Neural Repair. Journal of Neuroscience, 2015, 35, 13860-13867.	1.7	28
26	Post-stroke pain hypersensitivity induced by experimental thalamic hemorrhage in rats is region-specific and demonstrates limited efficacy of gabapentin. Neuroscience Bulletin, 2014, 30, 887-902.	1.5	27
27	Heritability of nociception IV: Neuropathic pain assays are genetically distinct across methods of peripheral nerve injury. Pain, 2014, 155, 868-880.	2.0	13
28	Nuclear Calcium Signaling in Spinal Neurons Drives a Genomic Program Required for Persistent Inflammatory Pain. Neuron, 2013, 77, 43-57.	3.8	114
29	High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats. PLoS ONE, 2013, 8, e57427.	1.1	21
30	Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception. PLoS Genetics, 2012, 8, e1003071.	1.5	23
31	Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nature Medicine, 2012, 18, 595-599.	15.2	335
32	Analgesia by inhibiting tetrahydrobiopterin synthesis. Current Opinion in Pharmacology, 2012, 12, 92-99.	1.7	39
33	Pain's peptide signature. Pain, 2012, 153, 509-510.	2.0	22
34	TrpA1 Regulates Thermal Nociception in Drosophila. PLoS ONE, 2011, 6, e24343.	1.1	140
35	GCH1, BH4 and Pain. Current Pharmaceutical Biotechnology, 2011, 12, 1728-1741.	0.9	56
36	The BMP Coreceptor RGMb Promotes While the Endogenous BMP Antagonist Noggin Reduces Neurite Outgrowth and Peripheral Nerve Regeneration by Modulating BMP Signaling. Journal of Neuroscience, 2011, 31, 18391-18400.	1.7	64

MICHAEL COSTIGAN

#	Article	IF	CITATIONS
37	Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. Journal of Clinical Investigation, 2011, 121, 4332-4347.	3.9	195
38	R-Flurbiprofen Reduces Neuropathic Pain in Rodents by Restoring Endogenous Cannabinoids. PLoS ONE, 2010, 5, e10628.	1.1	76
39	TRPA1 Contributes to Cold Hypersensitivity. Journal of Neuroscience, 2010, 30, 15165-15174.	1.7	248
40	Multiple chronic pain states are associated with a common amino acid–changing allele in KCNS1. Brain, 2010, 133, 2519-2527.	3.7	224
41	A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene. Cell, 2010, 143, 628-638.	13.5	283
42	T-Cell Infiltration and Signaling in the Adult Dorsal Spinal Cord Is a Major Contributor to Neuropathic Pain-Like Hypersensitivity. Journal of Neuroscience, 2009, 29, 14415-14422.	1.7	380
43	Neuropathic Pain: A Maladaptive Response of the Nervous System to Damage. Annual Review of Neuroscience, 2009, 32, 1-32.	5.0	1,562
44	COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. Journal of Clinical Investigation, 2009, 119, 287-94.	3.9	98
45	Ro5-4864 promotes neonatal motor neuron survival and nerve regeneration in adult rats. European Journal of Neuroscience, 2008, 27, 937-946.	1.2	38
46	GCH1 Haplotype Determines Vascular and Plasma Biopterin Availability in Coronary Artery Disease. Journal of the American College of Cardiology, 2008, 52, 158-165.	1.2	83
47	Origins, Actions and Dynamic Expression Patterns of the Neuropeptide VGF in Rat Peripheral and Central Sensory Neurones Following Peripheral Nerve Injury. Molecular Pain, 2008, 4, 1744-8069-4-62.	1.0	40
48	Reliable Screening for a Pain-Protective Haplotype in the GTP Cyclohydrolase 1 Gene (GCH1) Through the Use of 3 or Fewer Single Nucleotide Polymorphisms. Clinical Chemistry, 2007, 53, 1010-1015.	1.5	52
49	Complement Induction in Spinal Cord Microglia Results in Anaphylatoxin C5a-Mediated Pain Hypersensitivity. Journal of Neuroscience, 2007, 27, 8699-8708.	1.7	211
50	Spinal microglia and neuropathic pain in young rats. Pain, 2007, 128, 215-224.	2.0	106
51	GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Molecular and Cellular Neurosciences, 2007, 36, 185-194.	1.0	55
52	GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nature Medicine, 2006, 12, 1269-1277.	15.2	504
53	The Voltage-Gated Sodium Channel Nav1.9 Is an Effector of Peripheral Inflammatory Pain Hypersensitivity. Journal of Neuroscience, 2006, 26, 12852-12860.	1.7	265
54	High basal expression and injury-induced down regulation of two regulator of G-protein signaling transcripts, RGS3 and RGS4 in primary sensory neurons. Molecular and Cellular Neurosciences, 2003, 24, 106-116.	1.0	23

MICHAEL COSTIGAN

#	Article	IF	CITATIONS
55	Exploiting microarrays to reveal differential gene expression in the nervous system. Genome Biology, 2003, 4, 105.	13.9	18
56	No DREAM, No Pain. Cell, 2002, 108, 297-300.	13.5	83
57	Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neuroscience, 2002, 3, 16.	0.8	489
58	Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiological Genomics, 2001, 4, 165-174.	1.0	224
59	Developmental Expression of the TTX-Resistant Voltage-Gated Sodium Channels Na _v 1.8 (SNS) and Na _v 1.9 (SNS2) in Primary Sensory Neurons. Journal of Neuroscience, 2001, 21, 6077-6085.	1.7	146
60	Diversity of Expression of the Sensory Neuron-Specific TTX-Resistant Voltage-Gated Sodium Ion Channels SNS and SNS2. Molecular and Cellular Neurosciences, 2000, 15, 331-342.	1.0	264
61	Pain: Molecular mechanisms. Journal of Pain, 2000, 1, 35-44.	0.7	180
62	A Role for HSP27 in Sensory Neuron Survival. Journal of Neuroscience, 1999, 19, 8945-8953.	1.7	155
63	Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nature Neuroscience, 1998, 1, 653-655.	7.1	262
64	Heat Shock Protein 27: Developmental Regulation and Expression after Peripheral Nerve Injury. Journal of Neuroscience, 1998, 18, 5891-5900.	1.7	167