
Hiro-Yuki Hirano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1132069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flower meristem maintenance by <i>TILLERS ABSENT 1</i> is essential for ovule development in rice. Development (Cambridge), 2021, 148, .	2.5	5
2	Antagonistic action of <i>TILLERS ABSENT1</i> and <i>FLORAL ORGAN NUMBER2</i> regulates stem cell maintenance during axillary meristem development in rice. New Phytologist, 2020, 225, 974-984.	7.3	17
3	CURLED LATER1 encoding the largest subunit of the Elongator complex has a unique role in leaf development and meristem function in rice. Plant Journal, 2020, 104, 351-364.	5.7	2
4	Stem Cell Maintenance in the Shoot Apical Meristems and during Axillary Meristem Development. Cytologia, 2020, 85, 3-8.	0.6	6
5	<i>TILLERS ABSENT1</i> , the <i>WUSCHEL</i> ortholog, is not involved in stem cell maintenance in the shoot apical meristem in rice. Plant Signaling and Behavior, 2019, 14, 1640565.	2.4	15
6	DWARF WITH SLENDER LEAF1 encoding a histone deacetylase plays diverse roles in rice development. Plant and Cell Physiology, 2019, 61, 457-469.	3.1	2
7	Rice Flower Development Revisited: Regulation of Carpel Specification and Flower Meristem Determinacy. Plant and Cell Physiology, 2019, 60, 1284-1295.	3.1	22
8	<i><scp>BELL</scp>1</i> â€like homeobox genes regulate inflorescence architecture and meristem maintenance in rice. Plant Journal, 2019, 98, 465-478.	5.7	20
9	Transcriptional Corepressor ASP1 and CLV-Like Signaling Regulate Meristem Maintenance in Rice. Plant Physiology, 2019, 180, 1520-1534.	4.8	20
10	Class I KNOX Gene <i>OSH1</i> is Indispensable for Axillary Meristem Development in Rice. Cytologia, 2019, 84, 343-346.	0.6	7
11	WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice. PLoS Genetics, 2018, 14, e1007365.	3.5	44
12	Two-Color In Situ Hybridization: A Technique for Simultaneous Detection of Transcripts from Different Loci. Methods in Molecular Biology, 2018, 1830, 269-287.	0.9	7
13	Three <i><scp>TOB</scp>1</i> â€related <i><scp>YABBY</scp></i> genes are required to maintain proper function of the spikelet and branch meristems in rice. New Phytologist, 2017, 215, 825-839.	7.3	60
14	Genetic Enhancer Analysis Reveals that FLORAL ORGAN NUMBER2 and OsMADS3 Co-operatively Regulate Maintenance and Determinacy of the Flower Meristem in Rice. Plant and Cell Physiology, 2017, 58, 893-903.	3.1	29
15	Characterization of a <i>half-pipe-like leaf1</i> mutant that exhibits a curled leaf phenotype. Genes and Genetic Systems, 2017, 92, 287-291.	0.7	5
16	Polar patterning of the spikelet is disrupted in the <i>two opposite lemma</i> mutant in rice. Genes and Genetic Systems, 2016, 91, 193-200.	0.7	1
17	Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number. Genes and Genetic Systems, 2016, 91, 235-240.	0.7	9
18	Generation of artificial <i>drooping leaf</i> mutants by CRISPR-Cas9 technology in rice. Genes and Genetic Systems, 2015, 90, 231-235.	0.7	24

HIRO-YUKI HIRANO

#	Article	IF	CITATIONS
19	Analysis of a rice <i>fickle spikelet1</i> mutant that displays an increase in flower and spikelet organ number with inconstant expressivity. Genes and Genetic Systems, 2015, 90, 181-184.	0.7	2
20	Axillary Meristem Formation in Rice Requires the <i>WUSCHEL</i> Ortholog <i>TILLERS ABSENT1</i> . Plant Cell, 2015, 27, 1173-1184.	6.6	141
21	The <i><scp>DROOPING LEAF</scp></i> and <i><scp>O</scp>s<scp>ETTIN</scp>2</i> genes promote awn development in rice. Plant Journal, 2014, 77, 616-626.	5.7	71
22	Flower Development in Rice. Advances in Botanical Research, 2014, 72, 221-262.	1.1	12
23	Overexpression analysis suggests that <i>FON2-LIKE CLE PROTEIN1</i> is involved in rice leaf development. Genes and Genetic Systems, 2014, 89, 87-91.	0.7	5
24	A role for <i>TRIANGULAR HULL1</i> in fine-tuning spikelet morphogenesis in rice. Genes and Genetic Systems, 2014, 89, 61-69.	0.7	18
25	Grass Flower Development. Methods in Molecular Biology, 2014, 1110, 57-84.	0.9	39
26	Two WUSCHEL-related homeobox Genes, narrow leaf2 and narrow leaf3, Control Leaf Width in Rice. Plant and Cell Physiology, 2013, 54, 779-792.	3.1	85
27	Grass Meristems I: Shoot Apical Meristem Maintenance, Axillary Meristem Determinacy and the Floral Transition. Plant and Cell Physiology, 2013, 54, 302-312.	3.1	109
28	<i>WUSCHEL-RELATED HOMEOBOX4</i> Is Involved in Meristem Maintenance and Is Negatively Regulated by the CLE Gene <i>FCP1</i> in Rice. Plant Cell, 2013, 25, 229-241.	6.6	129
29	Grass Meristems II: Inflorescence Architecture, Flower Development and Meristem Fate. Plant and Cell Physiology, 2013, 54, 313-324.	3.1	159
30	Formation of two florets within a single spikelet in the rice tongari-boushi1 mutant. Plant Signaling and Behavior, 2012, 7, 793-795.	2.4	9
31	The <i>YABBY</i> Gene <i>TONGARI-BOUSHI1</i> Is Involved in Lateral Organ Development and Maintenance of Meristem Organization in the Rice Spikelet. Plant Cell, 2012, 24, 80-95.	6.6	132
32	<i>ABERRANT SPIKELET AND PANICLE1</i> , encoding a TOPLESSâ€related transcriptional coâ€repressor, is involved in the regulation of meristem fate in rice. Plant Journal, 2012, 70, 327-339.	5.7	109
33	Temporal and spatial regulation of <i>DROOPING LEAF</i> gene expression that promotes midrib formation in rice. Plant Journal, 2011, 65, 77-86.	5.7	77
34	Common and distinct mechanisms underlying the establishment of adaxial and abaxial polarity in stamen and leaf development. Plant Signaling and Behavior, 2011, 6, 430-433.	2.4	7
35	Distinct Regulation of Adaxial-Abaxial Polarity in Anther Patterning in Rice Â. Plant Cell, 2010, 22, 1452-1462.	6.6	96
36	The homeotic gene <i>long sterile lemma</i> (<i>G1</i>) specifies sterile lemma identity in the rice spikelet. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20103-20108.	7.1	163

HIRO-YUKI HIRANO

#	Article	IF	CITATIONS
37	FON2 SPARE1 Redundantly Regulates Floral Meristem Maintenance with FLORAL ORGAN NUMBER2 in Rice. PLoS Genetics, 2009, 5, e1000693.	3.5	58
38	The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes and Genetic Systems, 2009, 84, 137-146.	0.7	64
39	Allelic diversification at the wx locus in landraces of Asian rice. Theoretical and Applied Genetics, 2008, 116, 979-989.	3.6	142
40	Genetic Regulation of Meristem Maintenance and Organ Specification in Rice Flower Development. Biotechnology in Agriculture and Forestry, 2008, , 177-189.	0.2	1
41	A Transposon, Ping, is Integrated into Intron 4 of the DROOPING LEAF Gene of Rice, Weakly Reducing its Expression and Causing a Mild Drooping Leaf Phenotype. Plant and Cell Physiology, 2008, 49, 1176-1184.	3.1	41
42	Functional Diversification of CLAVATA3-Related CLE Proteins in Meristem Maintenance in Rice Â. Plant Cell, 2008, 20, 2049-2058.	6.6	94
43	Genome-wide expression profiling and identification of genes under the control of the DROOPING LEAF gene during midrib development in rice. Genes and Genetic Systems, 2008, 83, 237-244.	0.7	3
44	Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Molecular Genetics and Genomics, 2007, 277, 457-468.	2.1	124
45	Function and Diversification of MADS-Box Genes in Rice. Scientific World Journal, The, 2006, 6, 1923-1932.	2.1	64
46	Conservation and Diversification of Meristem Maintenance Mechanism in Oryza sativa : Function of the FLORAL ORGAN NUMBER2 Gene. Plant and Cell Physiology, 2006, 47, 1591-1602.	3.1	159
47	Function and Diversification of MADS-Box Genes in Rice. TSW Development & Embryology, 2006, 1, 99-108.	0.2	8
48	OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes and Genetic Systems, 2005, 80, 135-139.	0.7	158
49	Anaconda, a new class of transposon belonging to the Mu superfamily, has diversified by acquiring host genes during rice evolution. Molecular Genetics and Genomics, 2005, 274, 606-15.	2.1	12
50	Genetics and Evolution of Inflorescence and Flower Development in Grasses. Plant and Cell Physiology, 2005, 46, 69-78.	3.1	203
51	Functional Diversification of the Two C-Class MADS Box Genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2005, 18, 15-28.	6.6	322
52	The YABBY Gene DROOPING LEAF Regulates Carpel Specification and Midrib Development in Oryza sativa Â[W]. Plant Cell, 2004, 16, 500-509.	6.6	390
53	Differences in Starch Characteristics of Rice Strains Having Different Sensitivities to Maturation Temperatures. Journal of Agronomy and Crop Science, 2004, 190, 218-221.	3.5	12
54	The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development (Cambridge), 2004, 131, 5649-5657.	2.5	267

Hiro-Yuki Hirano

#	Article	IF	CITATIONS
55	Isolation of mutants with aberrant mitochondrial morphology from Arabidopsis thaliana. Genes and Genetic Systems, 2004, 79, 301-305.	0.7	26
56	Role of Amylose in the Maintenance of the Configuration of Rice Starch Granules. Starch/Staerke, 2003, 55, 524-528.	2.1	20
57	The plant MITE mPing is mobilized in anther culture. Nature, 2003, 421, 167-170.	27.8	251
58	SUPERWOMAN1 and DROOPING LEAFgenes control floral organ identity in rice. Development (Cambridge), 2003, 130, 705-718.	2.5	412
59	Starch Characteristics of the Rice Mutantdu2-2Taichung 65 Highly Affected by Environmental Temperatures During Seed Development. Cereal Chemistry, 2003, 80, 184-187.	2.2	22
60	Title is missing!. Euphytica, 2002, 123, 95-100.	1.2	17
61	Mutations that cause amino acid substitutions at the invariant positions in homeodomain of OSH3 KNOX protein suggest artificial selection during rice domestication Genes and Genetic Systems, 2001, 76, 381-392.	0.7	12
62	Auxin response factor family in rice Genes and Genetic Systems, 2001, 76, 373-380.	0.7	39
63	Comparison of Waxy gene regulation in the endosperm and pollen in Oryza sativa L Genes and Genetic Systems, 2000, 75, 245-249.	0.7	18
64	Effects of the two most common Wx alleles on different genetic backgrounds in rice. Plant Breeding, 2000, 119, 505-508.	1.9	27
65	Molecular analysis of the NAC gene family in rice. Molecular Genetics and Genomics, 2000, 262, 1047-1051.	2.4	206
66	Analysis of intragenic recombination at <i>wx</i> in rice: Correlation between the molecular and genetic maps within the locus. Genome, 2000, 43, 589-596.	2.0	60
67	Analysis of intragenic recombination at <i>wx</i> in rice: Correlation between the molecular and genetic maps within the locus. Genome, 2000, 43, 589-596.	2.0	18
68	Altered tissue-specific expression at the Wx gene of the opaque mutants in rice. Euphytica, 1999, 105, 91-97.	1.2	62
69	Amyloplast formation in cultured tobacco cells. III Determination of the timing of gene expression necessary for starch accumulation. Plant Cell Reports, 1999, 18, 589-594.	5.6	9
70	Enhancement of Wx Gene Expression and the Accumulation of Amylose in Response to Cool Temperatures during Seed Development in Rice. Plant and Cell Physiology, 1998, 39, 807-812.	3.1	102
71	A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice. Molecular Biology and Evolution, 1998, 15, 978-987.	8.9	177
72	A Rapid and Easy-handling Procedure for Isolation of DNA from Rice, Arabidopsis and Tobacco Plant Biotechnology, 1998, 15, 45-48.	1.0	5

HIRO-YUKI HIRANO

#	Article	IF	CITATIONS
73	Retrotransposition of a plant SINE into the wx locus during evolution of rice. Journal of Molecular Evolution, 1994, 38, 132-137.	1.8	42
74	Gamete Eliminator Adjacent to the wx Locus as Recealed by Pollen Analysis in Rice. Journal of Heredity, 1994, 85, 310-312.	2.4	20
75	Classification and relationships of rice strains with AA genome by identification of transposable elements at nine loci Japanese Journal of Genetics, 1993, 68, 205-217.	1.0	32
76	Genetic and Developmental Bases for Phenotypic Plasticity in Deepwater Rice. Journal of Heredity, 1993, 84, 201-205.	2.4	10
77	Genetic Regulation of the Amylose Synthesis of Rice Journal of the Japanese Society of Starch Science, 1993, 40, 195-201.	0.1	0
78	A nuclear gene modifying instability of fertility restoration in cytoplasmic male sterile rice. Genetical Research, 1992, 60, 195-200.	0.9	5
79	Analysis of intergenic spacer regions in the nuclear rDNA of <i>Pharbitis nil</i> . Genome, 1992, 35, 92-97.	2.0	8
80	Molecular Characterization of the waxy Locus of Rice (Oryza sativa). Plant and Cell Physiology, 1991, 32, 989-997.	3.1	93
81	Cloning and structural analysis of the snap-back DNA of Pharbitis nil. Plant Molecular Biology, 1989, 12, 235-244.	3.9	6
82	Unique repetitive sequences of 170 bp inChlorella. Plant Molecular Biology, 1986, 7, 311-317.	3.9	3
83	Isolation of High Molecular Weight Cellular DNA with a Novel Granulated Hydroxylapatite. Agricultural and Biological Chemistry, 1986, 50, 219-221.	0.3	3
84	High-flow-rate hydroxylapatites. Analytical Biochemistry, 1985, 150, 228-234.	2.4	22