Jonghyeon Noh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11319946/publications.pdf

Version: 2024-02-01

1478505 1872680 6 611 6 6 citations h-index g-index papers 6 6 6 1161 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intrinsically Stretchable Organic Solar Cells with Efficiencies of over 11%. ACS Energy Letters, 2021, 6, 2512-2518.	17.4	69
2	Flexible Transparent Crystalline-ITO/Ag Nanowire Hybrid Electrode with High Stability for Organic Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56462-56469.	8.0	29
3	Mechanical Properties of Polymer–Fullerene Bulk Heterojunction Films: Role of Nanomorphology of Composite Films. Chemistry of Materials, 2017, 29, 3954-3961.	6.7	50
4	Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Layers. ACS Applied Materials & Surface Energy of Buffer Energy of	8.0	20
5	Au@Ag Core–Shell Nanocubes for Efficient Plasmonic Light Scattering Effect in Low Bandgap Organic Solar Cells. ACS Nano, 2014, 8, 3302-3312.	14.6	228
6	Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Scientific Reports, 2013, 3, .	3.3	215