
Mario Rivera-Meza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11319758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene knockdown of HCN2 ion channels in the ventral tegmental area reduces ethanol consumption in alcohol preferring rats. American Journal of Drug and Alcohol Abuse, 2022, 48, 165-175.	2.1	2
2	UFR2709, an Antagonist of Nicotinic Acetylcholine Receptors, Delays the Acquisition and Reduces Long-Term Ethanol Intake in Alcohol-Preferring UChB Bibulous Rats. Biomedicines, 2022, 10, 1482.	3.2	2
3	The Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion Channels in the Rewarding Effects of Ethanol. , 2019, , 171-178.		1
4	Molecular modeling of salsolinol, a full G _i protein agonist of the μâ€opioid receptor, within the receptor binding site. Chemical Biology and Drug Design, 2019, 94, 1467-1477.	3.2	4
5	Gene and cell therapy on the acquisition and relapse-like binge drinking in a model of alcoholism: translational options. Gene Therapy, 2019, 26, 407-417.	4.5	3
6	UFR2709, a Nicotinic Acetylcholine Receptor Antagonist, Decreases Ethanol Intake in Alcohol-Preferring Rats. Frontiers in Pharmacology, 2019, 10, 1429.	3.5	5
7	Silencing brain catalase expression reduces ethanol intake in developmentally-lead-exposed rats. NeuroToxicology, 2019, 70, 180-186.	3.0	7
8	Activation of mitochondrial aldehyde dehydrogenase (ALDH2) by ALDA-1 reduces both the acquisition and maintenance of ethanol intake in rats: A dual mechanism?. Neuropharmacology, 2019, 146, 175-183.	4.1	13
9	Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors, decreases ethanol consumption in alcohol-preferring UChB rats. Behavioural Brain Research, 2018, 349, 169-176.	2.2	5
10	Racemic Salsolinol and its Enantiomers Act as Agonists of the μ-Opioid Receptor by Activating the Gi Protein-Adenylate Cyclase Pathway. Frontiers in Behavioral Neuroscience, 2017, 10, 253.	2.0	20
11	Acquisition, Maintenance and Relapse-Like Alcohol Drinking: Lessons from the UChB Rat Line. Frontiers in Behavioral Neuroscience, 2017, 11, 57.	2.0	22
12	Fenofibrate Administration Reduces Alcohol and Saccharin Intake in Rats: Possible Effects at Peripheral and Central Levels. Frontiers in Behavioral Neuroscience, 2017, 11, 133.	2.0	23
13	Beyond the "First Hit― Marked Inhibition by <i>N</i> -Acetyl Cysteine of Chronic Ethanol Intake But Not of Early Ethanol Intake. Parallel Effects on Ethanol-Induced Saccharin Motivation. Alcoholism: Clinical and Experimental Research, 2016, 40, 1044-1051.	2.4	35
14	(R)-Salsolinol, a product of ethanol metabolism, stereospecifically induces behavioral sensitization and leads to excessive alcohol intake. Addiction Biology, 2016, 21, 1063-1071.	2.6	28
15	The "First Hit―Toward Alcohol Reinforcement: Role of Ethanol Metabolites. Alcoholism: Clinical and Experimental Research, 2015, 39, 776-786.	2.4	33
16	PPARα Agonists Reduce Alcohol Drinking: Do They Act in the Brain or in the Liver?. Alcohol and Alcoholism, 2015, 50, 717-718.	1.6	10
17	Longâ€ŧerm inhibition of ethanol intake by the administration of an aldehyde dehydrogenaseâ€2 (<scp>ALDH</scp> 2)â€coding lentiviral vector into the ventral tegmental area of rats. Addiction Biology, 2015, 20, 336-344.	2.6	28
18	Overexpression of Hyperpolarizationâ€Activated Cyclic Nucleotideâ€Gated Channels into the Ventral Tegmental Area Increases the Rewarding Effects of Ethanol in UChB Drinking Rats. Alcoholism: Clinical and Experimental Research, 2014, 38, 911-920.	2.4	18

MARIO RIVERA-MEZA

#	Article	IF	CITATIONS
19	Salsolinol, free of isosalsolinol, exerts ethanol-like motivational/sensitization effects leading to increases in ethanol intake. Alcohol, 2014, 48, 551-559.	1.7	35
20	The Alcohol Deprivation Effect: Marked Inhibition by Anticatalase Gene Administration into the Ventral Tegmental Area in Rats. Alcoholism: Clinical and Experimental Research, 2013, 37, 1278-1285.	2.4	30
21	Gene specific modifications unravel ethanol and acetaldehyde actions. Frontiers in Behavioral Neuroscience, 2013, 7, 80.	2.0	16
22	Reduction of Ethanol Consumption in Alcohol-Preferring Rats by Dual Expression Gene Transfer. Alcohol and Alcoholism, 2012, 47, 102-108.	1.6	17
23	Reward and Relapse: Complete Geneâ€Induced Dissociation in an Animal Model of Alcohol Dependence. Alcoholism: Clinical and Experimental Research, 2012, 36, 517-522.	2.4	37
24	Acetaldehyde Burst Protection of ADH1B*2 Against Alcoholism: An Additional Hormesis Protection Against Esophageal Cancers Following Alcohol Consumption?. Alcoholism: Clinical and Experimental Research, 2011, 35, 806-810.	2.4	3
25	Ethanol as a Prodrug: Brain Metabolism of Ethanol Mediates its Reinforcing Effects. Alcoholism: Clinical and Experimental Research, 2011, 35, 606-612.	2.4	99
26	Mechanism of protection against alcoholism by an alcohol dehydrogenase polymorphism: development of an animal model. FASEB Journal, 2010, 24, 266-274.	0.5	35