
Gennaro Schettini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11319226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemokines and Their Receptors in the Central Nervous System. Frontiers in Neuroendocrinology, 2001, 22, 147-184.	2.5	348
2	Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. Journal of Neurochemistry, 2002, 82, 1311-1329.	2.1	274
3	Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Research, 2003, 63, 1969-74.	0.4	272
4	Glial and Neuronal Cells Express Functional Chemokine Receptor CXCR4 and Its Natural Ligand Stromal Cell-Derived Factor 1. Journal of Neurochemistry, 2002, 73, 2348-2357.	2.1	197
5	Generation of an Apoptotic Intracellular Peptide by γ-Secretase Cleavage of Alzheimer's Amyloid ß Protein Precursor. Journal of Alzheimer's Disease, 2000, 2, 289-301.	1.2	195
6	Pyroglutamate-modified amyloid β-peptides - AβN3(pE) - strongly affect cultured neuron and astrocyte survival. Journal of Neurochemistry, 2002, 82, 1480-1489.	2.1	179
7	Stromal cell-derived factor- $1\hat{l}$ ± induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. Journal of Neurochemistry, 2001, 77, 1226-1236.	2.1	177
8	Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Experimental Cell Research, 2005, 308, 241-253.	1.2	153
9	Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: Role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochemistry International, 2006, 49, 423-432.	1.9	144
10	HIV-1 Tat Causes Apoptotic Death and Calcium Homeostasis Alterations in Rat Neurons. Biochemical and Biophysical Research Communications, 2001, 288, 301-308.	1.0	128
11	The β-Amyloid Precursor Protein APP Is Tyrosine-phosphorylated in Cells Expressing a Constitutively Active Form of the Abl Protoncogene. Journal of Biological Chemistry, 2001, 276, 19787-19792.	1.6	111
12	Signal Transduction through Tyrosine-phosphorylated C-terminal Fragments of Amyloid Precursor Protein via an Enhanced Interaction with Shc/Grb2 Adaptor Proteins in Reactive Astrocytes of Alzheimer's Disease Brain. Journal of Biological Chemistry, 2002, 277, 35282-35288.	1.6	110
13	Overexpression of Stromal Cell–Derived Factor 1 and Its Receptor CXCR4 Induces Autocrine/Paracrine Cell Proliferation in Human Pituitary Adenomas. Clinical Cancer Research, 2008, 14, 5022-5032.	3.2	104
14	Expression of the Chemokine Receptor CXCR4 and Its Ligand Stromal Cellâ€Đerived Factor 1 in Human Brain Tumors and Their Involvement in Glial Proliferation <i>in Vitro</i> . Annals of the New York Academy of Sciences, 2002, 973, 60-69.	1.8	97
15	Adenosine 3′,5′-Monophosphate (cAMP) and Calcium-Calmodulin Interrelation in the Control of Prolactin Secretion: Evidence for Dopamine Inhibition of cAMP Accumulation and Prolactin Release after Calcium Mobilization*. Endocrinology, 1983, 112, 1801-1807.	1.4	88
16	Chemokines and their receptors in the CNS: expression of CXCL12/SDF-1 and CXCR4 and their role in astrocyte proliferation. Toxicology Letters, 2003, 139, 181-189.	0.4	88
17	Expression of Somatostatin Receptor mRNA in Human Meningiomas and their Implication in in vitro Antiproliferative Activity. Journal of Neuro-Oncology, 2004, 66, 155-166.	1.4	87
18	Amyloid Precursor Protein and Presenilin1 Interact with the Adaptor GRB2 and Modulate ERK 1,2 Signaling. Journal of Biological Chemistry, 2007, 282, 13833-13844.	1.6	83

#	Article	IF	CITATIONS
19	CXCR4 Activation Induces Epidermal Growth Factor Receptor Transactivation in an Ovarian Cancer Cell Line. Annals of the New York Academy of Sciences, 2004, 1030, 162-169.	1.8	80
20	Intracellular Calcium Rise through L-Type Calcium Channels, as Molecular Mechanism for Prion Protein Fragment 106-126-Induced Astroglial Proliferation. Biochemical and Biophysical Research Communications, 1996, 228, 397-405.	1.0	76
21	Polydeoxyribonucleotides enhance the proliferation of human skin fibroblasts: Involvement of A2 purinergic receptor subtypes. Life Sciences, 1999, 64, 1661-1674.	2.0	74
22	Identification of Amino-Terminally and Phosphotyrosine-Modified Carboxy-Terminal Fragments of the Amyloid Precursor Protein in Alzheimer's Disease and Down's Syndrome Brain. Neurobiology of Disease, 2001, 8, 173-180.	2.1	74
23	Prion protein fragment 106-126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. , 1998, 54, 341-352.		73
24	Somatostatin inhibition of adenylate cyclase activity in different brain areas. Brain Research, 1989, 492, 65-71.	1.1	72
25	Somatostatin Inhibits PC Cl3 Thyroid Cell Proliferation through the Modulation of Phosphotyrosine Phosphatase Activity. Journal of Biological Chemistry, 1996, 271, 6129-6136.	1.6	70
26	Expression of Chemokine Receptors in the Rat Braina. Annals of the New York Academy of Sciences, 1999, 876, 201-209.	1.8	68
27	The amyloid precursor protein and its network of interacting proteins: physiological and pathological implications. Brain Research Reviews, 2005, 48, 257-264.	9.1	66
28	Apoptotic Cell Death and Impairment of L-Type Voltage-Sensitive Calcium Channel Activity in Rat Cerebellar Granule Cells Treated with the Prion Protein Fragment 106–126. Neurobiology of Disease, 2000, 7, 299-309.	2.1	64
29	β-Amyloid precursor protein metabolism: focus on the functions and degradation of its intracellular domain. Pharmacological Research, 2010, 62, 308-317.	3.1	62
30	Human Pancreatic Tumor Growth Hormone-Releasing Factor Stimulates Anterior Pituitary Adenylate Cyclase Activity, Adenosine 3′,5′-Monophosphate Accumulation, and Growth Hormone Release in a Calmodulin-Dependent Manner*. Endocrinology, 1984, 115, 1308-1314.	1.4	60
31	Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence that a soluble variant of the 106–126 peptide is neurotoxic. Journal of Neurochemistry, 2003, 85, 62-72.	2.1	60
32	Phosphorylation of APPâ€CTFâ€AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role – relevance for Alzheimer pathology. Journal of Neurochemistry, 2010, 115, 1299-1308.	2.1	60
33	p38 MAP Kinase Mediates the Cell Death Induced by PrP106–126 in the SH-SY5Y Neuroblastoma Cells. Neurobiology of Disease, 2002, 9, 69-81.	2.1	59
34	Pharmacological evidence of supersensitivity of central serotonergic receptors involved in the control of prolactin secretion. European Journal of Pharmacology, 1981, 76, 9-13.	1.7	57
35	Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. Journal of Physiology (Paris), 2000, 94, 239-250.	2.1	56
36	Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106–126. International Journal of Developmental Neuroscience, 2000, 18, 481-492.	0.7	56

#	Article	IF	CITATIONS
37	The Expression of the Phosphotyrosine Phosphatase DEP-1/PTPη Dictates the Responsivity of Glioma Cells to Somatostatin Inhibition of Cell Proliferation. Journal of Biological Chemistry, 2004, 279, 29004-29012.	1.6	55
38	CXCR4 and SDF1 expression in human meningiomas: A proliferative role in tumoral meningothelial cells in vitro1. Neuro-Oncology, 2007, 9, 3-11.	0.6	53
39	Inhibition of nuclear factor-?B activation induces apoptosis in cerebellar granule cells. Journal of Neuroscience Research, 2001, 66, 1064-1073.	1.3	51
40	The Activation of the Phosphotyrosine Phosphatase η (r-PTPη) Is Responsible for the Somatostatin Inhibition of PC Cl3 Thyroid Cell Proliferation. Molecular Endocrinology, 2001, 15, 1838-1852.	3.7	49
41	Chemokine Stromal Cell-Derived Factor 1α Induces Proliferation and Growth Hormone Release in GH4C1 Rat Pituitary Adenoma Cell Line through Multiple Intracellular Signals. Molecular Pharmacology, 2006, 69, 539-546.	1.0	49
42	Somatostatin and SMS 201-995 reverse the impairment of cognitive functions induced by cysteamine depletion of brain somatostatin. European Journal of Pharmacology, 1988, 151, 399-407.	1.7	48
43	Characterization of the intracellular mechanisms mediating somatostatin and lanreotide inhibition of DNA synthesis and growth hormone release from dispersed human GH-secreting pituitary adenoma cells in vitro. Clinical Endocrinology, 2003, 59, 115-128.	1.2	48
44	The rat tyrosine phosphatase $\hat{I}\cdot$ increases cell adhesion by activating c-Src through dephosphorylation of its inhibitory phosphotyrosine residue. Oncogene, 2005, 24, 3187-3195.	2.6	48
45	The Differential Response of Protein Kinase A to Cyclic AMP in Discrete Brain Areas Correlates with the Abundance of Regulatory Subunit II. Journal of Neurochemistry, 1996, 66, 1752-1761.	2.1	45
46	Somatostatin Receptor Subtype-Dependent Regulation of Nitric Oxide Release: Involvement of Different Intracellular Pathways. Molecular Endocrinology, 2005, 19, 255-267.	3.7	44
47	Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function. Journal of Molecular Endocrinology, 2007, 38, 383-389.	1.1	42
48	Antitumor activity of a new orally active organotin compound: a preliminary study in murine tumor models. Anti-Cancer Drugs, 2002, 13, 599-604.	0.7	40
49	In Vitro Studies on Basal and Stimulated Prolactin Release by Rat Anterior Pituitary: A Possible Role for Calmodulin*. Endocrinology, 1983, 112, 64-70.	1.4	38
50	The Effects of Maitotoxin on45Ca2+Flux and Hormone Release in GH3 Rat Pituitary Cells*. Endocrinology, 1985, 116, 622-627.	1.4	38
51	Isolation of a Long-Lasting <i>eag</i> -Related Gene-Type K ⁺ Current in MMQ Lactotrophs and Its Accommodating Role during Slow Firing and Prolactin Release. Journal of Neuroscience, 2002, 22, 3414-3425.	1.7	38
52	β25–35 Alters Calcium Homeostasis and Induces Neurotoxicity in Cerebellar Granule Cells. Journal of Neurochemistry, 1996, 66, 1995-2003.	2.1	38
53	CXC Receptor and Chemokine Expression in Human Meningioma: SDF1/CXCR4 Signaling Activates ERK1/2 and Stimulates Meningioma Cell Proliferation. Annals of the New York Academy of Sciences, 2006, 1090, 332-343.	1.8	38
54	RAPID AND LONG-LASTING SUPPRESSION OF PROLACTIN SECRETION AND SHRINKAGE OF PROLACTINOMAS AFTER INJECTION OF LONG-ACTING REPEATABLE FORM OF BROMOCRIPTINE (PARLODEL LAR). Clinical Endocrinology, 1990, 33, 161-170.	1.2	35

#	Article	IF	CITATIONS
55	Interleukin-1-β Modulation of Prolactin Secretion from Rat Anterior Pituitary Cells: Involvement of Adenylate Cyclase Activity and Calcium Mobilization*. Endocrinology, 1990, 126, 1435-1441.	1.4	34
56	The Type and the Localization of cAMP-dependent Protein Kinase Regulate Transmission of cAMP Signals to the Nucleus in Cortical and Cerebellar Granule Cells. Journal of Biological Chemistry, 1999, 274, 6546-6552.	1.6	34
57	Signal Transduction through Tyrosineâ€Phosphorylated Carboxyâ€Terminal Fragments of APP via an Enhanced Interaction with Shc/Grb2 Adaptor Proteins in Reactive Astrocytes of Alzheimer's Disease Brain. Annals of the New York Academy of Sciences, 2002, 973, 323-333.	1.8	34
58	Vasoactive Intestinal Peptide and Forskolin Stimulate Interleukin 6 Production by Rat Cortical Astrocytes in Culture via a Cyclic AMP-Dependent, Prostaglandin-Independent Mechanism. Journal of Neurochemistry, 2002, 63, 344-350.	2.1	33
59	The Phosphotyrosine Phosphatase η Mediates Somatostatin Inhibition of Glioma Proliferation via the Dephosphorylation of ERK1/2. Annals of the New York Academy of Sciences, 2004, 1030, 264-274.	1.8	33
60	SDF-1 Controls Pituitary Cell Proliferation through the Activation of ERK1/2 and the Ca2+-Dependent, Cytosolic Tyrosine Kinase Pyk2. Annals of the New York Academy of Sciences, 2006, 1090, 385-398.	1.8	33
61	Somatostatin inhibition of anterior pituitary adenylate cyclase activity: different sensitivity between male and female rats. Brain Research, 1988, 439, 322-329.	1.1	32
62	Basic Fibroblast Growth Factor Activates Endothelial Nitric-Oxide Synthase in CHO-K1 Cells via the Activation of Ceramide Synthesis. Molecular Pharmacology, 2003, 63, 297-310.	1.0	32
63	Somatostatin Inhibits Interleukin 6 Release from Rat Cortical Type I Astrocytes via the Inhibition of Adenylyl Cyclase. Biochemical and Biophysical Research Communications, 1997, 235, 242-248.	1.0	31
64	Age-related alterations of somatostatin gene expression in different rat brain areas. Brain Research, 1991, 557, 64-68.	1.1	27
65	Maitotoxin-Induced Intracellular Calcium Rise in PC 12 Cells: Involvement of Dihydropyridine-Sensitive and ?-Conotoxin-Sensitive Calcium Channels and Phosphoinositide Breakdown. Journal of Neurochemistry, 1992, 59, 679-688.	2.1	26
66	InÂvitro effect of human recombinant leptin and expression of leptin receptors on growth hormone-secreting human pituitary adenomas. Clinical Endocrinology, 2002, 57, 449-455.	1.2	25
67	Apoptotic cell death influences the signaling activity of the amyloid precursor protein through ShcA and Grb2 adaptor proteins in neuroblastoma SH-SY5Y cells. Journal of Neurochemistry, 2004, 90, 1359-1370.	2.1	24
68	Intracellular Signalling Mediating HIV-1 gp120 Neurotoxicity. Cellular Signalling, 1998, 10, 75-84.	1.7	22
69	Adenylate cyclase activity of \hat{l}_2 -ras -k transformed rat epithelial thyroid cells. FEBS Letters, 1988, 228, 37-41.	1.3	19
70	Oncogene Transformation of PC Cl3 Clonal Thyroid Cell Line Induces an Autonomous Pattern of Proliferation That Correlates with a Loss of Basal and Stimulated Phosphotyrosine Phosphatase Activity*. Endocrinology, 1997, 138, 3756-3763.	1.4	19
71	Modulation by GTP of Basal and Agonist-Stimulated Striatal Adenylate Cyclase Activity Following Chronic Blockade of D1 and D2 Dopamine Receptors: Involvement of G Proteins in the Development of Receptor Supersensitivity. Journal of Neurochemistry, 1992, 59, 1667-1674.	2.1	17
72	Amyloid Precursor Protein Modulates ERK-1 and -2 Signaling. Annals of the New York Academy of Sciences, 2006, 1090, 455-465.	1.8	17

#	Article	IF	CITATIONS
73	Penfluridol Decreases Secretagogue-Induced TSH, GH, and LH Secretion in vitro:A Possible Role for Calcium-Calmodulin. Neuroendocrinology, 1983, 37, 229-234.	1.2	16
74	Effect of interleukin 1 beta on transducing mechanisms in 235-1 clonal pituitary cells. Biochemical and Biophysical Research Communications, 1988, 155, 1089-1096.	1.0	16
75	Synergistic Stimulation of Interleukin 6 Release and Gene Expression by Phorbol Esters and Interleukin 11² in Rat Cortical Astrocytes: Role of Protein Kinase C Activation and Blockade. Journal of Neurochemistry, 2002, 64, 1945-1953.	2.1	16
76	Bacterial Lipopolysaccharide Increases Interleukin-6 and Prostaglandin Release in Rat Cortical Type I Astrocytes by Different Mechanisms: Role of Anti-inflammatory Agents. Biochemical and Biophysical Research Communications, 1998, 250, 798-804.	1.0	15
77	Pattern of Distribution of Calcitonin Gene-Related Peptide in the Dorsal Root Ganglion of Animal Models of Diabetes Mellitus. Annals of the New York Academy of Sciences, 2006, 1084, 296-303.	1.8	15
78	Amyloid Precursor Protein and Presenilin 1 Interaction Studied by FRET in Human H4 Cells. Annals of the New York Academy of Sciences, 2007, 1096, 249-257.	1.8	15
79	Amino-Terminally Truncated Prion Protein PrP90-231 Induces Microglial Activation in Vitro. Annals of the New York Academy of Sciences, 2007, 1096, 258-270.	1.8	15
80	Effect of interleukin 1 beta on transducing mechanisms in 235-1 clonal pituitary cells. Biochemical and Biophysical Research Communications, 1988, 155, 1097-1104.	1.0	14
81	Interleukin 1 beta inhibition of TRH-stimulated prolactin secretion and phosphoinositides metabolism. Biochemical and Biophysical Research Communications, 1989, 165, 496-505.	1.0	14
82	Nuclear localization of ciliary neurotrophic factor in glial cells. Brain Research, 1999, 818, 565-569.	1.1	14
83	Pyrrolidinedithiocarbamate induces apoptosis in cerebellar granule cells: involvement of AP-1 and MAP kinases. Neurochemistry International, 2003, 43, 31-38.	1.9	13
84	Nitric Oxide Production Stimulated by the Basic Fibroblast Growth Factor Requires the Synthesis of Ceramide. Annals of the New York Academy of Sciences, 2002, 973, 94-104.	1.8	12
85	Interleukin 6 modulation of second messenger systems in anterior pituitary cells. Life Sciences, 1992, 51, 1243-1248.	2.0	10
86	Chemosensitivity of glioblastoma cells during treatment with the organo-tin compound triethyltin(IV)lupinylsulfide hydrochloride. Journal of Neuro-Oncology, 2002, 60, 109-116.	1.4	10
87	BACE1 Overexpression Regulates Amyloid Precursor Protein Cleavage and Interaction with the ShcA Adapter. Annals of the New York Academy of Sciences, 2004, 1030, 330-338.	1.8	9
88	Oncogene Transformation of PC Cl3 Clonal Thyroid Cell Line Induces an Autonomous Pattern of Proliferation That Correlates with a Loss of Basal and Stimulated Phosphotyrosine Phosphatase Activity. , 0, .		9
89	Agents that increase cellular cyclic AMP or calcium stimulate prolactin release from the 235-1 pituitary cell line. European Journal of Pharmacology, 1985, 109, 335-340.	1.7	8
90	Thrombin mutants with altered enzymatic activity have an impaired mitogenic effect on mouse fibroblasts and are inefficient modulators of stellation of rat cortical astrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1451, 173-186.	1.9	7

#	Article	IF	CITATIONS
91	Apoptotic Cell Death and Amyloid Precursor Protein Signaling in Neuroblastoma SH-SY5Y Cells. Annals of the New York Academy of Sciences, 2004, 1030, 339-347.	1.8	7
92	Dopaminergic Inhibition of Anterior Pituitary Adenylate Cyclase Activity and Prolactin Release: The Effects of Perturbing Calcium on Catalytic Adenylate Cyclase Activity. Neuroendocrinology, 1986, 44, 1-7.	1.2	7
93	Chemical denervation produces supersensitivity of central serotonergic receptors involved in the control of TSH secretion in the rat. Brain Research, 1983, 261, 349-352.	1.1	6
94	Calmodulin modulates prolactin secretion in vitro: Studies with calmodulin containing liposomes. Life Sciences, 1987, 41, 2437-2444.	2.0	5
95	Clinical management of prolactinomas: A ten-year experience. Medical Oncology and Tumor Pharmacotherapy, 1992, 9, 93-99.	1.0	5
96	Aniracetam improves behavioural responses and facilitates signal transduction in the rat brain. Journal of Psychopharmacology, 1994, 8, 109-117.	2.0	4
97	Chemokines, their Receptors and Significance in Brain Function. NeuroImmune Biology, 2008, , 242-273.	0.2	4
98	Interleukin-1 Modulation of Anterior Pituitary Function Annals of the New York Academy of Sciences, 1990, 594, 489-491.	1.8	3
99	Immunofluorescence and biochemical techniques to detect nuclear localization of ciliary neurotrophic factor in glial cells. Brain Research Protocols, 2000, 5, 273-281.	1.7	3
100	Molecular Mechanisms Mediating Neuronal Cell Death in Experimental Models of Prion Diseases, in vitro. , 2005, , 273-297.		0