Jingyao Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11318370/publications.pdf Version: 2024-02-01

Ιινιανλο Οιι

#	Article	IF	CITATIONS
1	Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nature Biotechnology, 2011, 29, 428-435.	17.5	158
2	A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating Lewis ^x . ACS Chemical Biology, 2012, 7, 1232-1240.	3.4	135
3	Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chemical Communications, 2012, 48, 2728.	4.1	114
4	Efficient chemoenzymatic synthesis of an N-glycan isomer library. Chemical Science, 2015, 6, 5652-5661.	7.4	114
5	One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chemical Communications, 2011, 47, 10815.	4.1	97
6	Substrate Promiscuity of N-Acetylhexosamine 1-Kinases. Molecules, 2011, 16, 6396-6407.	3.8	74
7	Synthetic Disialyl Hexasaccharides Protect Neonatal Rats from Necrotizing Enterocolitis. Angewandte Chemie - International Edition, 2014, 53, 6687-6691.	13.8	69
8	An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of <i>O</i> -GlcNAc-Modified Proteins in Cells. ACS Chemical Biology, 2016, 11, 3002-3006.	3.4	55
9	Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Molecular BioSystems, 2011, 7, 1060.	2.9	53
10	One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorganic and Medicinal Chemistry, 2013, 21, 4778-4785.	3.0	45
11	Improved one-pot multienzyme (OPME) systems for synthesizing UDP-uronic acids and glucuronides. Chemical Communications, 2015, 51, 4595-4598.	4.1	39
12	Microbial desulfurization of gasoline by free whole-cells ofRhodococcus erythropolisXP. FEMS Microbiology Letters, 2006, 258, 284-289.	1.8	36
13	Rational designed mutagenesis of levansucrase from Bacillus licheniformis 8-37-0-1 for product specificity study. Applied Microbiology and Biotechnology, 2018, 102, 3217-3228.	3.6	31
14	A precise approach in large scale core-fucosylated glycoprotein identification with low- and high-normalized collision energy. Journal of Proteomics, 2015, 114, 61-70.	2.4	30
15	Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Organic and Biomolecular Chemistry, 2012, 10, 6112.	2.8	25
16	Transforming Flask Reaction into Cell-Based Synthesis: Production of Polyhydroxylated Molecules via Engineered <i>Escherichia coli</i> . ACS Catalysis, 2015, 5, 4060-4065.	11.2	24
17	Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification. Chemical Communications, 2014, 50, 3159-3162.	4.1	23
18	Efficient chemoenzymatic synthesis of novel galacto-N-biose derivatives and their sialylated forms. Chemical Communications, 2015, 51, 10310-10313.	4.1	22

Jingyao Qu

#	Article	IF	CITATIONS
19	Simultaneous Biodetoxification of S, N, and O Pollutants by Engineering of a Carbazole-Degrading Gene Cassette in a Recombinant Biocatalyst. Applied and Environmental Microbiology, 2006, 72, 7373-7376.	3.1	21
20	A Photobacterium sp. α2–6-sialyltransferase (Psp2,6ST) mutant with an increased expression level and improved activities in sialylating Tn antigens. Carbohydrate Research, 2015, 408, 127-133.	2.3	21
21	Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Applied Microbiology and Biotechnology, 2014, 98, 1127-1134.	3.6	20
22	Convenient and Precise Strategy for Mapping N-Glycosylation Sites Using Microwave-Assisted Acid Hydrolysis and Characteristic Ions Recognition. Analytical Chemistry, 2015, 87, 7833-7839.	6.5	20
23	Diethylaminoethyl Sepharose (DEAE-Sepharose) microcolumn for enrichment of glycopeptides. Analytical and Bioanalytical Chemistry, 2017, 409, 511-518.	3.7	19
24	Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs. Nature Protocols, 2016, 11, 1280-1298.	12.0	16
25	Improvement of core-fucosylated glycoproteome coverage via alternating HCD and ETD fragmentation. Journal of Proteomics, 2016, 146, 90-98.	2.4	14
26	Streamlined Subclass-Specific Absolute Quantification of Serum IgG Glycopeptides Using Synthetic Isotope-Labeled Standards. Analytical Chemistry, 2021, 93, 4449-4455.	6.5	12
27	Chemoenzymatic synthesis of ADP-d-glycero-β-d-manno-heptose and study of the substrate specificity of HldE. Bioorganic and Medicinal Chemistry, 2014, 22, 1139-1147.	3.0	11
28	Characterizing non-hydrolyzing Neisseria meningitidis serogroup A UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase using UDP-N-acetylmannosamine (UDP-ManNAc) and derivatives. Carbohydrate Research, 2016, 419, 18-28.	2.3	10
29	Biochemical characterization of an α1,2-colitosyltransferase from <i>Escherichia coli</i> O55:H7. Glycobiology. 2016. 26. 493-500.	2.5	4