Ahmad Naveed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11316259/publications.pdf

Version: 2024-02-01

471509 677142 1,712 22 17 22 citations h-index g-index papers 22 22 22 1736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 2760-2764.	13.8	369
2	A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Longâ€Cycleâ€Life Batteries. Advanced Materials, 2019, 31, e1900668.	21.0	259
3	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	18.0	195
4	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	13.8	152
5	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	18.0	92
6	Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Materials, 2022, 44, 206-230.	18.0	88
7	Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Materials, 2020, 27, 307-315.	18.0	80
8	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	18.0	74
9	Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54, 4132-4135.	4.1	68
10	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie, 2019, 131, 2786-2790.	2.0	54
11	A Review on Inorganic Nanoparticles Modified Composite Membranes for Lithium-Ion Batteries: Recent Progress and Prospects. Membranes, 2019, 9, 78.	3.0	50
12	Revisiting recent and traditional strategies for surface protection of Zn metal anode. Journal of Power Sources, 2022, 525, 231122.	7.8	41
13	High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33702-33709.	8.0	34
14	Duplex component additive of tris(trimethylsilyl) phosphite-vinylene carbonate for lithium sulfur batteries. Energy Storage Materials, 2018, 14, 75-81.	18.0	33
15	Zn anode sustaining high rate and high loading in organic electrolyte for rechargeable batteries. Energy Storage Materials, 2022, 46, 523-534.	18.0	25
16	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	2.0	23
17	Rechargeable hybrid organic Zn battery (ReHOZnB) with non-flammable electrolyte. Journal of Electroanalytical Chemistry, 2022, 904, 115949.	3.8	19
18	High Yield Synthesis, Detailed Spectroscopic Characterization and Electrochemical Fate of Novel Cationic Surfactants. Journal of Surfactants and Detergents, 2014, 17, 243-251.	2.1	16

#	Article	IF	CITATIONS
19	Bio-mass derived ultrahigh-energy storage porous graphitic carbon for advanced anode material in lithium battery. Materials Chemistry and Physics, 2020, 242, 122543.	4.0	12
20	Sulfurized Polyacrylonitrile Cathode Derived from Intermolecular Cross-Linked Polyacrylonitrile for a Rechargeable Lithium Battery. ACS Applied Energy Materials, 2021, 4, 5706-5712.	5.1	11
21	Self-sacrificing template based hollow carbon spheres/molybdenum dioxide nanocomposite for high-performance Lithium-ion batteries. Materials Today Communications, 2019, 21, 100694.	1.9	10
22	High performance nano-sized LiMn _{1â^'x} Fe _x PO ₄ cathode materials for advanced lithium-ion batteries. RSC Advances, 2017, 7, 43708-43715.	3.6	7