Tian-You Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing Nonuniform Adsorption in Multicomponent Metal–Organic Frameworks via Segmental Dynamics by Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2020, 11, 7167-7176.	4.6	7
2	Uniform copper–cobalt phosphides embedded in N-doped carbon frameworks as efficient bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Nanoscale, 2019, 11, 17384-17395.	5.6	36
3	The Elusive Nitro-Functionalised Member of the IRMOF-9 Family. Australian Journal of Chemistry, 2019, 72, 811.	0.9	2
4	Catalysts Confined in Programmed Framework Pores Enable New Transformations and Tune Reaction Efficiency and Selectivity. Journal of the American Chemical Society, 2019, 141, 1577-1582.	13.7	61
5	Systematic Tuning of the Luminescence Output of Multicomponent Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 15470-15476.	13.7	103
6	Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents. Chemical Science, 2017, 8, 3866-3870.	7.4	110
7	Modulating the Performance of an Asymmetric Organocatalyst by Tuning Its Spatial Environment in a Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 13936-13943.	13.7	102
8	Temperatureâ€Responsive Chiral (A) ₆ B Supramolecular Cages Based on Conformational Preferences. Chemistry - an Asian Journal, 2016, 11, 465-469.	3.3	2
9	Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chemical Communications, 2016, 52, 7588-7591.	4.1	76
10	Supramolecular radical polymers self-assembled from the stacking of radical cations of rod-like viologen di- and trimers. Organic Chemistry Frontiers, 2016, 3, 1635-1645.	4.5	34
11	Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy. Journal of the American Chemical Society, 2016, 138, 4710-4713.	13.7	249
12	A thermally stable pH-responsive "supramolecular buckle―based on the encapsulation of 4-(4-aminophenyl)-N-methylpyridinium by cucurbit[8]uril. Organic Chemistry Frontiers, 2015, 2, 1030-1034.	4.5	4
13	The construction of single-layer two-dimensional supramolecular organic frameworks in water through the self-assembly of rigid vertexes and flexible edges. Polymer Chemistry, 2015, 6, 1923-1927.	3.9	49
14	A Triptyceneâ€Based Microporous Organic Polymer Bearing Tridentate Ligands and Its Application in Suzuki–Miyaura Cross oupling Reaction. Macromolecular Rapid Communications, 2015, 36, 413-418.	3.9	26
15	Highly thermally stable hydrogels derived from monolayered two-dimensional supramolecular polymers. Polymer Chemistry, 2015, 6, 3018-3023.	3.9	38
16	Donor–acceptor interaction-driven folding of linear naphthalene–glycol oligomers templated by a rigid bipyridinium rod. Organic Chemistry Frontiers, 2015, 2, 1578-1583.	4.5	6
17	A Triptyceneâ€Based Porous Organic Polymer that Exhibited High Hydrogen and Carbon Dioxide Storage Capacities and Excellent CO ₂ /N ₂ Selectivity. Chinese Journal of Chemistry, 2015, 33, 539-544.	4.9	8
18	The construction of supramolecular polymers through anion bridging: from frustrated hydrogen-bonding networks to well-ordered linear arrays. Polymer Chemistry, 2015, 6, 7586-7593.	3.9	11

TIAN-YOU ZHOU

#	Article	IF	CITATIONS
19	Encapsulation Enhanced Dimerization of a Series of 4â€Arylâ€ <i>N</i> â€Methylpyridinium Derivatives in Water: New Building Blocks for Selfâ€Assembly in Aqueous Media. Chemistry - an Asian Journal, 2014, 9, 1530-1534.	3.3	36
20	Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals. Nature Communications, 2014, 5, 5574.	12.8	196
21	Wholly-rigid rod–rod amphiphiles: synthesis, crystal structures, and self-assembling behavior in water. Tetrahedron, 2014, 70, 2251-2256.	1.9	5
22	A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polymer Chemistry, 2014, 5, 4715-4721.	3.9	106
23	Selfâ€Assembly of Threeâ€Dimensional Supramolecular Polymers through Cooperative Tetrathiafulvalene Radical Cation Dimerization. Chemistry - A European Journal, 2014, 20, 575-584.	3.3	45
24	One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework. Journal of the American Chemical Society, 2014, 136, 15885-15888.	13.7	386
25	The construction of rigid supramolecular polymers in water through the self-assembly of rod-like monomers and cucurbit[8]uril. Chemical Communications, 2014, 50, 7982-7985.	4.1	31
26	Selfâ€Assembly of Chiral Propellerâ€like Supermolecules with Unusual "Sergeantsâ€andâ€Soldiers―and "Majorityâ€Rules―Effects. Chemistry - an Asian Journal, 2014, 9, 754-758.	3.3	17
27	Single-Step Solution-Phase Synthesis of Free-Standing Two-Dimensional Polymers and Their Evolution into Hollow Spheres. Macromolecules, 2013, 46, 7745-7752.	4.8	102
28	Toward a Single-Layer Two-Dimensional Honeycomb Supramolecular Organic Framework in Water. Journal of the American Chemical Society, 2013, 135, 17913-17918.	13.7	349
29	Foldamer-based chiral supramolecular alternate block copolymers tuned by ion-pair binding. Chemical Communications, 2013, 49, 2673.	4.1	26
30	Synthesis, properties, and self-assembly of 2,3-bis(n-octyl)hexaazatriphenylene. Chinese Chemical Letters, 2013, 24, 453-456.	9.0	11
31	Evaluation on the Stability of the Intramolecular N—H…OMe Hydrogen Bonds of Aromatic Amide Foldamers. Acta Chimica Sinica, 2013, 71, 51.	1.4	3
32	Redox-Responsive Reverse Vesicles Self-Assembled by Pseudo[2]rotaxanes for Tunable Dye Release. Langmuir, 2012, 28, 14839-14844.	3.5	26
33	Synthesis and characterization of photo- and pH-responsive nanoparticles containing amino-substituted azobenzene. Journal of Materials Chemistry, 2010, 20, 9133.	6.7	36