Azam Bolhassani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131518/publications.pdf

Version: 2024-02-01

146	3,888	27 h-index	57
papers	citations		g-index
148	148	148	5753
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	<i>In Silico</i> and <i>in Vivo</i> Analysis of HIV-1 Rev Regulatory Protein for Evaluation of a Multiepitope-based Vaccine Candidate. Immunological Investigations, 2022, 51 , 1 -28.	2.0	7
2	Comparison of the Efficacy of HIV-1 Nef-Tat-Gp160-p24 Polyepitope Vaccine Candidate with Nef Protein in Different Immunization Strategies. Current Drug Delivery, 2022, 19, 142-156.	1.6	1
3	Electroporation: An Effective Method For In Vivo Gene Delivery. Drug Delivery Letters, 2022, 12, .	0.5	O
4	Gene delivery in adherent and suspension cells using the combined physical methods. Cytotechnology, 2022, 74, 245-257.	1.6	2
5	In Vitro Delivery of HIV-1 Nef-Vpr DNA Construct Using the Human Antimicrobial Peptide LL-37. Current Drug Delivery, 2022, 19, .	1.6	1
6	Current and future direction in treatment of HPV-related cervical disease. Journal of Molecular Medicine, 2022, 100, 829-845.	3.9	20
7	Tumor cell-based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy, 2022, 14, 639-654.	2.0	25
8	Immunological investigation of a multiepitope peptide vaccine candidate based on main proteins of SARS-CoV-2 pathogen. PLoS ONE, 2022, 17, e0268251.	2.5	12
9	Cppsite 2.0: An Available Database of Experimentally Validated Cell-Penetrating Peptides Predicting their Secondary and Tertiary Structures. Journal of Molecular Biology, 2021, 433, 166703.	4.2	37
10	In vivo delivery of a multiepitope peptide and Nef protein using novel cell-penetrating peptides for development of HIV-1 vaccine candidate. Biotechnology Letters, 2021, 43, 547-559.	2.2	9
11	Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches. PLoS ONE, 2021, 16, e0247396.	2.5	16
12	In vitro Anti-HIV-1 Activity of the Recombinant HIV-1 TAT Protein Along With Tenofovir Drug. Current HIV Research, 2021, 19, 138-146.	0.5	1
13	Construction of a Prokaryotic Expression Vector harboring Two HIV-1 Accessory Genes. Medical Laboratory Journal, 2021, 15, 11-17.	0.2	3
14	Vaccine Development Against SARS-CoV-2: From Virology to Vaccine Clinical Trials. Coronaviruses, 2021, 2, 159-171.	0.3	4
15	Development of Delivery Systems Enhances the Potency of Cell-Based HIV-1 Therapeutic Vaccine Candidates. Journal of Immunology Research, 2021, 2021, 1-12.	2.2	3
16	In silico design and in vitro expression of novel multiepitope DNA constructs based on HIV-1 proteins and Hsp70 T-cell epitopes. Biotechnology Letters, 2021, 43, 1513-1550.	2.2	11
17	Evaluation of HIV-1 Regulatory and Structural Proteins as Antigen Candidate in Mice and Humans. Current HIV Research, 2021, 19, 225-237.	0.5	О
18	Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents. Immunotherapy, 2021, 13, 669-684.	2.0	22

#	Article	IF	Citations
19	The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Review of Vaccines, 2021, 20, 839-855.	4.4	4
20	Expression and Characterization of Two DNA Constructs Derived from HIV-1-vif in Escherichia coli and Mammalian Cells. Avicenna Journal of Medical Biotechnology, 2021, 13, 131-135.	0.3	0
21	Expression of a Novel HIV-1 Gag-Pol-Env-Nef-Rev Multi-Epitope Construct in Escherichia coli. Journal of Medical Microbiology and Infectious Diseases, 2021, 9, 62-70.	0.1	0
22	Combination of human papillomaviruses L1 and L2 multiepitope constructs protects mice against tumor cells. Fundamental and Clinical Pharmacology, 2021, 35, 1055-1068.	1.9	1
23	HIV-1 Accessory Proteins: Which one is Potentially Effective in Diagnosis and Vaccine Development?. Protein and Peptide Letters, 2021, 28, 687-698.	0.9	4
24	In SilicoÂDesign and Immunological Studies of Two Novel Multiepitope DNA-Based Vaccine Candidates Against High-Risk Human Papillomaviruses. Molecular Biotechnology, 2021, 63, 1192-1222.	2.4	6
25	Which one of the thermal approaches (heating DNA or cells) enhances the gene expression in mammalian cells?. Biotechnology Letters, 2021, 43, 1955-1966.	2.2	0
26	Immunological responses and anti-tumor effects of HPV16/18 L1-L2-E7 multiepitope fusion construct along with curcumin and nanocurcumin in C57BL/6 mouse model. Life Sciences, 2021, 285, 119945.	4.3	2
27	HIV-1 p24-nef DNA Vaccine plus Protein Boost Expands T-Cell Responses in BALB/c. Current Drug Delivery, 2021, 18, .	1.6	6
28	Synergistic effects of exosomal crocin or curcumin compounds and HPV L1-E7 polypeptide vaccine construct on tumor eradication in C57BL/6 mouse model. PLoS ONE, 2021, 16, e0258599.	2.5	16
29	Correlation of SARS-CoV-2 Infection with Hepatitis and Liver Disorders. Journal of Medical Microbiology and Infectious Diseases, 2021, 9, 122-132.	0.1	0
30	Development of HPV16,18,31,45 E5 and E7 peptides-based vaccines predicted by immunoinformatics tools. Biotechnology Letters, 2020, 42, 403-418.	2.2	27
31	Molecular Docking Analysis of 120 Potential HPV Therapeutic Epitopes Using a New Analytical Method. International Journal of Peptide Research and Therapeutics, 2020, 26, 1847-1861.	1.9	0
32	Design of novel multiepitope constructs-based peptide vaccine against the structural S, N and M proteins of human COVID-19 using immunoinformatics analysis. PLoS ONE, 2020, 15, e0240577.	2.5	33
33	Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Review of Clinical Pharmacology, 2020, 13, 1001-1046.	3.1	7
34	Development of multiepitope therapeutic vaccines against the most prevalent high-risk human papillomaviruses. Immunotherapy, 2020, 12, 459-479.	2.0	3
35	An overview of i>in silico / i>vaccine design against different pathogens and cancer. Expert Review of Vaccines, 2020, 19, 699-726.	4.4	41
36	Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Molecular Immunology, 2020, 119, 106-122.	2.2	17

#	Article	IF	Citations
37	Delivery of HIV-1 Polyepitope Constructs Using Cationic and Amphipathic Cell Penetrating Peptides into Mammalian Cells. Current HIV Research, 2020, 17, 408-428.	0.5	7
38	Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections. Current Molecular Pharmacology, 2020, 13, 173-181.	1.5	4
39	The Effects of Heat Shock Proteins on Delivery of HIV-1 Nef Antigen in Mammalian Cells. Vaccine Research, 2020, 7, 54-59.	0.3	3
40	B1 protein: a novel cell penetrating protein for in vitro and in vivo delivery of HIV-1 multi-epitope DNA constructs. Biotechnology Letters, 2020, 42, 1847-1863.	2.2	6
41	Detection of Anti-IgGs against Heat Shock Proteins 27 and 20, HP91 Peptide, and HIV-1 Polypeptides in HIV-Positive and Negative Patients. Journal of Medical Microbiology and Infectious Diseases, 2020, 8, 113-104.	0.1	0
42	Production and Evaluation of the Properties of HIV-1-Nef-MPER-V3 Fusion Protein Harboring IMT-P8 Cell Penetrating Peptide. Current HIV Research, 2020, 18, 315-323.	0.5	2
43	HR9: An Important Cell Penetrating Peptide for Delivery of HCV NS3 DNA into HEK-293T Cells. Avicenna Journal of Medical Biotechnology, 2020, 12, 44-51.	0.3	3
44	Effective Delivery of Nef-MPER-V3 Fusion Protein Using LDP12 Cell Penetrating Peptide for Development of Preventive/Therapeutic HIV-1 Vaccine. Protein and Peptide Letters, 2020, 27, 1151-1158.	0.9	3
45	Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunology Letters, 2019, 212, 70-80.	2.5	19
46	In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Scientific Reports, 2019, 9, 15225.	3.3	23
47	Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS ONE, 2019, 14, e0223844.	2.5	16
48	Heat shock proteins in infection. Clinica Chimica Acta, 2019, 498, 90-100.	1.1	97
49	Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnology Letters, 2019, 41, 1283-1298.	2.2	20
50	Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opinion on Drug Delivery, 2019, 16, 1227-1258.	5.0	124
51	Improvements in chemical carriers of proteins and peptides. Cell Biology International, 2019, 43, 437-452.	3.0	22
52	M918: A Novel Cell Penetrating Peptide for Effective Delivery of HIV-1 Nef and Hsp20-Nef Proteins into Eukaryotic Cell Lines. Current HIV Research, 2019, 16, 280-287.	0.5	8
53	Gene and protein delivery using four cell penetrating peptides for HIVâ€1 vaccine development. IUBMB Life, 2019, 71, 1619-1633.	3.4	24
54	Platelet microparticles: An effective delivery system for anti-viral drugs. Journal of Drug Delivery Science and Technology, 2019, 51, 290-296.	3.0	15

#	Article	IF	CITATIONS
55	Significance of serum antibodies against HPV E7, Hsp27, Hsp20 and Hp91 in Iranian HPV-exposed women. BMC Infectious Diseases, 2019, 19, 142.	2.9	11
56	Modified DCs and MSCs with HPV E7 antigen and small Hsps: Which one is the most potent strategy for eradication of tumors?. Molecular Immunology, 2019, 108, 102-110.	2.2	20
57	Analysis of long non-coding RNA expression in hemophilia A patients. Hematology, 2019, 24, 255-262.	1.5	2
58	Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy, 2019, 11, 215-239.	2.0	40
59	Anti-viral Effects of Superpositively Charged Mutant of Green Fluorescent Protein. Protein and Peptide Letters, 2019, 26, 930-939.	0.9	3
60	In Vitro Anti-Viral Effects of Small Heat Shock Proteins 20 and 27: A Novel Therapeutic Approach. Current Pharmaceutical Biotechnology, 2019, 20, 1011-1017.	1.6	6
61	Combination of Mechanical and Chemical Methods Improves Gene Delivery in Cell-based HIV Vaccines. Current Drug Delivery, 2019, 16, 818-828.	1.6	6
62	Induction of a Robust Humoral Response using HIV-1 VLP ^{MPER-V3} as a Novel Candidate Vaccine in BALB/c Mice. Current HIV Research, 2019, 17, 33-41.	0.5	7
63	Truncated Core/NS3 Fusion Protein of HCV Adjuvanted with Outer Membrane Vesicles of Neisseria meningitidis Serogroup B: Potent Inducer of the Murine Immune System. Iranian Biomedical Journal, 2019, 23, 235-245.	0.7	6
64	Enhancing HIV-1 Nef Penetration into Mammalian Cells as an Antigen Candidate. Journal of Medical Microbiology and Infectious Diseases, 2019, 7, 37-43.	0.1	6
65	In vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide. Journal of Medical Microbiology and Infectious Diseases, 2019, 7, 107-115.	0.1	4
66	G2 Dendrimer as a Carrier Can Enhance Immune Responses Against HCV-NS3 Protein in BALB/c Mice. Avicenna Journal of Medical Biotechnology, 2019, 11, 292-298.	0.3	3
67	Delivery of molecular cargoes in normal and cancer cell lines using non-viral delivery systems. Biotechnology Letters, 2018, 40, 923-931.	2.2	10
68	Supercharged green fluorescent protein delivers HPV16E7 DNA and protein into mammalian cells in vitro and in vivo. Immunology Letters, 2018, 194, 29-39.	2.5	19
69	Enhanced gene delivery in tumor cells using chemical carriers and mechanical loadings. PLoS ONE, 2018, 13, e0209199.	2.5	5
70	Prediction of crossâ€clade HIVâ€1 Tâ€cell epitopes using immunoinformatics analysis. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1284-1293.	2.6	24
71	A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PLoS ONE, 2018, 13, e0205933.	2.5	25
72	Small Heat Shock Proteins B1 and B6: Which One is the Most Effective Adjuvant in Therapeutic HPV Vaccine?. IUBMB Life, 2018, 70, 1002-1011.	3.4	10

#	Article	IF	Citations
73	Polymorphisms in the TGF- \hat{l}^21 (rs1982037) and IL-2 (rs2069762, rs4833248) genes are not associated with inhibitor development in Iranian patients with hemophilia A. Hematology, 2018, 23, 839-843.	1.5	2
74	Comparison of six cell penetrating peptides with different properties for in vitro and in vivo delivery of HPV16 E7 antigen in therapeutic vaccines. International Immunopharmacology, 2018, 62, 170-180.	3.8	28
75	Numerical modelling of a spheroid living cell membrane under hydrostatic pressure. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 083501.	2.3	6
76	Bioactive Components of Saffron and Their Pharmacological Properties. Studies in Natural Products Chemistry, 2018, , 289-311.	1.8	9
77	Generation of the Fluorescent HPV16 E7 Protein for Detection of Delivery In vitro. Protein and Peptide Letters, 2018, 25, 244-252.	0.9	1
78	Development of HCV Therapeutic Vaccines Using Hp91 Peptide and Small Heat Shock Protein 20 as an Adjuvant. Protein and Peptide Letters, 2018, 25, 924-932.	0.9	7
79	Target Molecules and Delivery Vehicles for Anti-HIV Drugs In vitro and In vivo. Current Pharmaceutical Design, 2018, 24, 3393-3401.	1.9	3
80	Antiviral Effects of Saffron and its Major Ingredients. Current Drug Delivery, 2018, 15, 698-704.	1.6	49
81	The Distinct Role of Small Heat Shock Protein 20 on HCV NS3 Expression in HEK-293T Cell Line. Avicenna Journal of Medical Biotechnology, 2018, 10, 152-157.	0.3	7
82	Conjugated anionic PEG-citrate G2 dendrimer with multi-epitopic HIV-1 vaccine candidate enhance the cellular immune responses in mice. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1762-1768.	2.8	14
83	Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunology Letters, 2017, 188, 38-45.	2.5	35
84	Hp91 immunoadjuvant: An HMGB1-derived peptide for development of therapeutic HPV vaccines. Biomedicine and Pharmacotherapy, 2017, 85, 148-154.	5.6	12
85	Prospects and progress ofListeria-based cancer vaccines. Expert Opinion on Biological Therapy, 2017, 17, 1-12.	3.1	14
86	Small heat shock protein 27: An effective adjuvant for enhancement of HIV-1 Nef antigen-specific immunity. Immunology Letters, 2017, 191, 16-22.	2.5	23
87	Comparison of HCV Core and CoreE1E2 Virus-Like Particles Generated by Stably Transfected Leishmania tarentolae for the Stimulation of Th1 Immune Responses in Mice. Current Drug Delivery, 2017, 14, 1040-1049.	1.6	3
88	Delivery of HIV-1 Nef Protein in Mammalian Cells Using Cell Penetrating Peptides as a Candidate Therapeutic Vaccine. International Journal of Peptide Research and Therapeutics, 2017, 23, 145-153.	1.9	10
89	In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides, 2017, 87, 50-63.	2.4	179
90	Carotenoids: biochemistry, pharmacology and treatment. British Journal of Pharmacology, 2017, 174, 1290-1324.	5.4	473

#	Article	IF	CITATIONS
91	Delivery of HIV-1 Nef linked to heat shock protein 27 using a cationic polymer is more effective than cationic lipid in mammalian cells. Bratislava Medical Journal, 2017, 118, 334-338.	0.8	7
92	Immuno-Stimulating Peptide Derived from HMGB1 is More Effective Than the N-Terminal Domain of Gp96 as an Endogenous Adjuvant for Improvement of Protein Vaccines. Protein and Peptide Letters, 2017, 24, 190-196.	0.9	3
93	The Efficiency of Tat Cell Penetrating Peptide for Intracellular Uptake of HIV-1 Nef Expressed in E. coli and Mammalian Cell. Current Drug Delivery, 2017, 14, 536-542.	1.6	8
94	HPV16 L2 improves HPV16 L1 gene delivery as an important approach for vaccine design against cervical cancer. Bratislava Medical Journal, 2016, 116, 179-184.	0.8	3
95	Different strategies of gene delivery for treatment of cancer and other disorders. Journal of Solid Tumors, 2016, 6, .	0.1	4
96	Protein vaccination with HPV16 E7/Pepâ€1 nanoparticles elicits a protective Tâ€helper cellâ€mediated immune response. IUBMB Life, 2016, 68, 459-467.	3.4	22
97	Different applications of virusâ€ike particles in biology and medicine: Vaccination and delivery systems. Biopolymers, 2016, 105, 113-132.	2.4	106
98	Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine, 2016, 34, 413-423.	3.8	198
99	The structural HCV genes delivered by MPG cell penetrating peptide are directed to enhance immune responses in mice model. Drug Delivery, 2016, 23, 2852-2859.	5.7	20
100	Evaluation of Truncated HCV-NS3 Protein for Potential Applications in Immunization and Diagnosis. Clinical Laboratory, 2016, 62, 1271-1278.	0.5	3
101	Expression of HCV Alternative Reading Frame Protein (Core+ $1/F$) in Baculovirus Expression System and its Evaluation for Assessment of Specific Anti-core+1 Antibody in Iranian HCV Infected Patients. Clinical Laboratory, 2016, 62, 1919-1926.	0.5	1
102	Correlation Study Between IL-28B Gene Polymorphism (rs8099917SNP) and Sustained Virological Response in Iranian Patients with Chronic Hepatitis C. Clinical Laboratory, 2016, 62, 417-23.	0.5	4
103	Immunogenicity and Efficacy of Live Expressing KMP11-NTGP96-GFP Fusion as a Vaccine Candidate against Experimental Visceral Caused by. Iranian Journal of Parasitology, 2016, 11, 144-158.	0.6	9
104	HPV prophylactic vaccines: Second-generation or first-generation vaccines. Journal of Solid Tumors, 2015, 5, .	0.1	0
105	Chemo-immunotherapy using saffron and its ingredients followed by E7-NT (gp96) DNA vaccine generates different anti-tumor effects against tumors expressing the E7 protein of human papillomavirus. Archives of Virology, 2015, 160, 499-508.	2.1	18
106	Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96. Archives of Virology, 2015, 160, 141-152.	2.1	14
107	Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection. Biopolymers, 2015, 103, 363-375.	2.4	31
108	MPG-based nanoparticle: An efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine, 2015, 33, 3164-3170.	3.8	47

#	Article	IF	Citations
109	Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunology Letters, 2015, 168, 366-373.	2.5	26
110	VLP production in Leishmania tarentolae: A novel expression system for purification and assembly of HPV16 L1. Protein Expression and Purification, 2015, 116, 7-11.	1.3	17
111	Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line. Iranian Journal of Biotechnology, 2015, 13, 55-62.	0.3	8
112	Expression and Purification of HCV Core and Core-E1E2 Proteins in Different Bacterial Strains. Iranian Journal of Biotechnology, 2015, 13, 57-62.	0.3	5
113	A Live Vector Expressing HPV16 L1 Generates an Adjuvant-Induced Antibody Response In-vivo. Iranian Journal of Cancer Prevention, 2015, 8, e3991.	0.7	5
114	Immunostimulant Properties of Chemical Delivery Systems in Vaccine Development. Current Drug Delivery, 2015, 12, 360-368.	1.6	2
115	Cancer Chemoprevention by Natural Carotenoids as an Efficient Strategy. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 1026-1031.	1.7	40
116	Whole recombinant <i>Pichia pastoris</i> expressing HPV16 L1 antigen is superior in inducing protection against tumor growth as compared to killed transgenic <i>Leishmania</i> Human Vaccines and Immunotherapeutics, 2014, 10, 3499-3508.	3.3	20
117	Polymeric nanoparticles. Human Vaccines and Immunotherapeutics, 2014, 10, 321-332.	3.3	219
118	Anticancer Effect and Molecular Targets of Saffron Carotenoids. The Enzymes, 2014, 36, 57-86.	1.7	17
119	Retinoids and their biological effects against cancer. International Immunopharmacology, 2014, 18, 43-49.	3.8	70
120	Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 20-30.	7.4	146
121	Induction of Strong and Specific Humoral and T-helper 1 Cellular Responses by HBsAg Entrapped in the Methanobrevibacter smithii Archaeosomes. Avicenna Journal of Medical Biotechnology, 2014, 6, 238-45.	0.3	1
122	A non-pathogenic live vector as an efficient delivery system in vaccine design for the prevention of HPV16 E7-overexpressing cancers. Drug Delivery, 2013, 20, 190-198.	5.7	15
123	Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections. Molecular Immunology, 2013, 53, 149-160.	2.2	20
124	Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFî± and î±5integrin Expression in Antigen Presenting Cells. Hepatitis Monthly, 2013, 13, e8104.	0.2	10
125	Development of Novel Prime-Boost Strategies Based on a Tri-Gene Fusion Recombinant L. tarentolae Vaccine against Experimental Murine Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2013, 7, e2174.	3.0	66
126	Mini-chaperones. Human Vaccines and Immunotherapeutics, 2013, 9, 153-161.	3.3	16

#	Article	IF	Citations
127	Recombinant <i>Leishmania tarentolae</i> encoding the HPV type 16 <i>E7</i> gene in tumor mice model. Immunotherapy, 2012, 4, 1107-1120.	2.0	25
128	Different domains of glycoprotein 96 influence HPV16 E7 DNA vaccine potency via electroporation mediated delivery in tumor mice model. Immunology Letters, 2012, 148, 117-125.	2.5	13
129	Therapeutic live vaccines as a potential anticancer strategy. International Journal of Cancer, 2012, 131, 1733-1743.	5.1	47
130	The Contribution of NTâ€gp96 as an Adjuvant for Increasing HPV16 E7â€Specific Immunity in C57BL /6 Mouse Model. Scandinavian Journal of Immunology, 2012, 75, 27-37.	2.7	24
131	Non-Viral Delivery Systems in Gene Therapy and Vaccine Development. , 2011, , .		3
132	Contribution of human neutrophils in the development of protective immune response during <i>in vitro Leishmania major</i> i> infection. Parasite Immunology, 2011, 33, 609-620.	1.5	15
133	Fluorescent Leishmania species: Development of stable GFP expression and its application for in vitro and in vivo studies. Experimental Parasitology, 2011, 127, 637-645.	1.2	83
134	Leishmania major: Protective capacity of DNA vaccine using amastin fused to HSV-1 VP22 and EGFP in BALB/c mice model. Experimental Parasitology, 2011, 128, 9-17.	1.2	12
135	Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 232-246.	7.4	153
136	Improvement of different vaccine delivery systems for cancer therapy. Molecular Cancer, 2011, 10, 3.	19.2	197
137	Enhancement of potent immune responses to HPV16 E7 antigen by using different vaccine modalities. BMC Proceedings, 2011, 5, .	1.6	4
138	Different spectra of therapeutic vaccine development against HPV infections. Hum Vaccin, 2009, 5, 671-689.	2.4	31
139	The efficiency of a novel delivery system (PEI600-Tat) in development of potent DNA vaccine using HPV16 E7 as a model antigen. Drug Delivery, 2009, 16, 196-204.	5.7	30
140	DNA immunization as an efficient strategy for vaccination. Avicenna Journal of Medical Biotechnology, 2009, 1, 71-88.	0.3	25
141	Antibody detection against HPV16 E7 & GP96 fragments as biomarkers in cervical cancer patients. Indian Journal of Medical Research, 2009, 130, 533-41.	1.0	9
142	Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine, 2008, 26, 3362-3370.	3.8	69
143	Heat-shock proteins as powerful weapons in vaccine development. Expert Review of Vaccines, 2008, 7, 1185-1199.	4.4	107
144	Electroporation – Advantages and Drawbacks for Delivery of Drug, Gene and Vaccine. , 0, , .		18

#	Article	IF	CITATIONS
145	Which Vaccination Strategies and Immune Responses are More Effective Against HIV Infections?., 0, , .		О
146	Immunopotentiation by linking Hsp70 T-cell epitopes to Gag-Pol-Env-Nef-Rev multiepitope construct and increased IFN-gamma secretion in infected lymphocytes. Pathogens and Disease, 0, , .	2.0	2