
T S Srivatsan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11314879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion Behavior of an Anti-Icing Coating on an Aluminum Alloy: An Experimental and Numerical Study. Journal of Engineering Materials and Technology, Transactions of the ASME, 2021, 143, .	0.8	2
2	Nano Hydroxyapatite (Nano-Hap): A Potential Bioceramic For Biomedical Applications. Current Nanomaterials, 2021, 06, .	0.2	2
3	Conjoint influence of environment and load on fatigue life of a bolted aluminum alloy structure. AIP Advances, 2021, 11, 075210.	0.6	3
4	Role of Matrix Microstructure in Governing the Mechanical Behavior and Corrosion Response of Two Magnesium Alloy Metal Matrix Composites. Jom, 2020, 72, 2882-2891.	0.9	2
5	Mechanical and Electrochemical Coupled Pitting Behavior of 2219 Aluminum Alloy: A Theoretical and Experimental Study. Journal of Engineering Materials and Technology, Transactions of the ASME, 2020, 142, .	0.8	1
6	The technique of electrospinning for manufacturing core-shell nanofibers. Materials and Manufacturing Processes, 2018, 33, 202-219.	2.7	28
7	An innovative tool for engineering good-quality holes in composite laminates. Materials and Manufacturing Processes, 2017, 32, 952-957.	2.7	18
8	Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel. Journal of Materials Engineering and Performance, 2016, 25, 138-150.	1.2	1
9	Extrinsic Influence of Environment-Induced Degradation on Load Carrying Capacity of Steel Beams. Journal of Materials Engineering and Performance, 2015, 24, 4224-4235.	1.2	Ο
10	On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel. Journal of Materials Engineering and Performance, 2015, 24, 2451-2463.	1.2	2
11	A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure. Journal of Materials Engineering and Performance, 2014, 23, 65-76.	1.2	12
12	Mechanical Behavior of Two High Strength Alloy Steels Under Conditions of Cyclic Tension. Journal of Materials Engineering and Performance, 2014, 23, 198-212.	1.2	2
13	Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300ÂM. Journal of Materials Engineering and Performance, 2014, 23, 1799-1814.	1.2	1
14	Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums. , 2014, , 55-76.		0
15	The Bearing Strength and Fracture Behavior of Bolted Connections in Two Aluminum Alloys. Journal of Materials Engineering and Performance, 2013, 22, 3430-3438.	1.2	3
16	Influence of Shot Peening on Failure of an Aluminum Alloy Exposed to Aggressive Aqueous Environments. Journal of Materials Engineering and Performance, 2013, 22, 1735-1743.	1.2	7
17	Modeling the Effect of Carburization and Quenching on the Development of Residual Stresses and Bending Fatigue Resistance of Steel Gears. Journal of Materials Engineering and Performance, 2013, 22, 664-672.	1.2	21
18	An Analysis of Gas Metal Arc Welding Using the Lyapunov Exponent. Materials and Manufacturing Processes, 2013, 28, 213-219.	2.7	19

#	Article	lF	CITATIONS
19	Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue. Journal of Materials Engineering and Performance, 2013, 22, 439-453.	1.2	38
20	Coupling of Laser with Plasma Arc to Facilitate Hybrid Welding of Metallic Materials: A Review. Journal of Materials Engineering and Performance, 2013, 22, 384-395.	1.2	24
21	The quasi-static deformation and fracture behavior of novel high-strength steel for emerging applications. Emerging Materials Research, 2013, 2, 17-26.	0.4	1
22	Investigating and Understanding the Bending Fatigue Response and Fracture Behavior of Two High Strength Steels. Materials Performance and Characterization, 2013, 2, 420-439.	0.2	0
23	The Spectral Analysis of Different Flux-Cored Wires during Arc Welding of Metals. Materials and Manufacturing Processes, 2012, 27, 664-669.	2.7	2
24	The Quasi-static Deformation, Failure, and Fracture Behavior of Titanium Alloy Gusset Plates Containing Bolt Holes. Journal of Materials Engineering and Performance, 2012, 21, 2363-2374.	1.2	1
25	The Bolt Bearing Response and Tensile Deformation Capacity of Plates Made from a Titanium Alloy. Journal of Materials Engineering and Performance, 2012, 21, 1696-1702.	1.2	1
26	Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy. Journal of Materials Science, 2012, 47, 3621-3638.	1.7	30
27	The Role of Tool Design in Influencing the Mechanism for the Formation of Friction Stir Welds in Aluminum Alloy 7020. Materials and Manufacturing Processes, 2011, 26, 915-921.	2.7	31
28	The Tensile Response and Fracture Behavior of Four High Strength Specialty Steels. Steel Research International, 2011, 82, 1385-1393.	1.0	2
29	On the Use of Arc Radiation to Detect the Quality of Gas Metal Arc Welds. Materials and Manufacturing Processes, 2011, 26, 933-941.	2.7	14
30	On the Use of Gas Metal Arc Welding for Manufacturing Beams of Commercially Pure Titanium and a Titanium Alloy. Materials and Manufacturing Processes, 2011, 26, 311-318.	2.7	16
31	An Investigation of Strain Concentration in High-Strength Al-Zn-Mg-Cu Alloy 7085 Subjected to Tensile Deformation. Journal of Materials Engineering and Performance, 2010, 19, 705-713.	1.2	5
32	A Study of the Tensile Deformation and Fracture Behavior of Commercially Pure Titanium and Titanium Alloy: Influence of Orientation and Microstructure. Journal of Materials Engineering and Performance, 2010, 19, 1172-1182.	1.2	47
33	The rapid solidification processing of materials: science, principles, technology, advances, and applications. Journal of Materials Science, 2010, 45, 287-325.	1.7	222
34	Investigating influence of hybrid (yttria + copper) nanoparticulate reinforcements on microstructural development and tensile response of magnesium. Materials Science and Technology, 2010, 26, 87-94.	0.8	28
35	An Investigation of Friction During Friction Stir Welding of Metallic Materials. Materials and Manufacturing Processes, 2009, 24, 438-445.	2.7	76
36	Four-Point Fatigue Testing of Pressurized Composite Pipe. Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, 131, .	0.4	0

#	Article	IF	CITATIONS
37	An investigation of microstructure, hardness, tensile behaviour of a titanium alloy: Role of orientation. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 235-250.	0.8	17
38	A study aimed at characterizing the interfacial structure in a tin-silver solder on nickel-coated copper plate during aging. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 251-259.	0.8	3
39	The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 261-272.	0.8	19
40	Influence of Tool Geometry in Friction Stir Welding. Materials and Manufacturing Processes, 2008, 23, 188-194.	2.7	78
41	Role of Temperature on Sliding Response of Aluminum on Steel of a Hot Extrusion. Materials and Manufacturing Processes, 2007, 23, 29-36.	2.7	6
42	Analysis of Stress and Strain Distribution in a Vehicle Wheel: Finite Element Analysis Versus the Experimental Method. Journal of Strain Analysis for Engineering Design, 2005, 40, 513-523.	1.0	10
43	INFLUENCE OF REINFORCEMENT AND PROCESSING ON THE WEAR RESPONSE OF TWO MAGNESIUM ALLOYS. Materials and Manufacturing Processes, 2005, 20, 255-271.	2.7	18
44	Damage Tolerant Magnesium Metal Matrix Composites: Influence of Reinforcement and Processing. Materials and Manufacturing Processes, 2005, 20, 747-760.	2.7	6
45	Synthesis of New Metastable Aluminum-Titanium Alloy by Defying Equilibrium in an Equilibrium Process. Materials and Manufacturing Processes, 2003, 18, 891-902.	2.7	5
46	Title is missing!. Journal of Materials Synthesis and Processing, 2002, 10, 75-81.	0.3	4
47	Microstructure and Hardness of Copper Powders Consolidated by Plasma Pressure Compaction. Journal of Materials Engineering and Performance, 2001, 10, 449-455.	1.2	12
48	The Impact Fracture Behavior of Aluminum Alloy 2024-T351: Influence of Notch Severity. Journal of Materials Engineering and Performance, 2001, 10, 362-370.	1.2	4
49	A Study of Fusion Zone Microstructures of Arc-Welded Joints Made from Dissimilar Aluminum Alloys. Journal of Materials Engineering and Performance, 2001, 10, 173-177.	1.2	6
50	THE CYCLIC FATIGUE AND FRACTURE BEHAVIOR OF A SPRAY ATOMIZED AND DEPOSITED ALUMINUM ALLOY. , 2001, , .		0
51	DAMAGE TOLERANT COPPER-NIOBIUM MICROCOMPOSITE. , 2001, , .		0
52	DAMAGE AND FRACTURE OF RAPIDLY SOLIDIFIED MAGNESIUM ALLOYS. , 2001, , .		0
53	Application of Shape Memory Alloy Wire Actuator for Precision Position Control of a Composite Beam. Journal of Materials Engineering and Performance, 2000, 9, 330-333.	1.2	41
54	The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 959-974.	1.1	1

#	Article	IF	CITATIONS
55	The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 959-974.	1.1	11
56	Design Criteria for Bolted Connection Elements in Aluminum Alloy 6061. Journal of Mechanical Design, Transactions of the ASME, 1999, 121, 348-358.	1.7	17
57	The impact behavior of aluminum alloy 6061: Effects of notch severity. Journal of Materials Science, 1999, 34, 2793-2800.	1.7	3
58	Title is missing!. Journal of Materials Science, 1999, 34, 4859-4866.	1.7	6
59	Microstructure and Mechanical Properties of A Spray-Atomized and Deposited Al-Cu-Mg-Ag Alloy. Journal of Materials Synthesis and Processing, 1999, 7, 365-372.	0.3	1
60	Microstructure and Grain Growth Behavior of an Aluminum Alloy Metal Matrix Composite Processed by Disintegrated Melt Deposition. Journal of Materials Engineering and Performance, 1999, 8, 473-478.	1.2	35
61	Mechanical Response and Failure of Bolted Connection Elements in Aluminum Alloy 5083. Journal of Materials Engineering and Performance, 1999, 8, 211-218.	1.2	2
62	Temperature and the ductility, deformation, and fracture of Al 7055. Jom, 1999, 51, 42-45.	0.9	15
63	An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1025-1038.	1.1	9
64	Title is missing!. Journal of Materials Science, 1998, 33, 1661-1675.	1.7	10
65	Processing and Response of Aluminum-Lithium Alloy Composites Reinforced with Copper-Coated Silicon Carbide Particulates. Journal of Materials Engineering and Performance, 1998, 7, 66-70.	1.2	1
66	Deformation and Fracture Properties of Damage Tolerant In-situ Titanium Matrix Composites. Applied Composite Materials, 1997, 4, 361-374.	1.3	1
67	Microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055. Journal of Materials Science, 1997, 32, 2883-2894.	1.7	79
68	Deformation and fracture properties of damage tolerant in-situ titanium matrix composites. Applied Composite Materials, 1997, 4, 361-374.	1.3	11
69	Mechanisms governing deformation and damage during elevated-temperature fatigue of an aluminum-magnesium-silicon alloy. Journal of Materials Engineering and Performance, 1997, 6, 187-198.	1.2	2
70	The fatigue response and fracture behavior of a spray atomized and deposited aluminum-silicon alloy. Journal of Materials Engineering and Performance, 1997, 6, 654-663.	1.2	3
71	Microstructure, tensile properties and fracture behaviour of Al2O3 particulate-reinforced aluminium alloy metal matrix composites. Journal of Materials Science, 1996, 31, 1375-1388.	1.7	66
72	The tensile behaviour of gamma titanium aluminide intermetallic. Journal of Materials Science, 1996, 31, 2193-2198.	1.7	5

#	Article	IF	CITATIONS
73	The tensile behavior of a silicon carbide fiber-reinforced titanium matrix composite. Applied Composite Materials, 1996, 3, 215-247.	1.3	1
74	The tensile behaviour of rapidly solidified magnesium alloys. Journal of Materials Science, 1995, 30, 1832-1838.	1.7	31
75	The tensile behaviour of a modified 1070 steel. Journal of Materials Science Letters, 1995, 14, 1010-1013.	0.5	0
76	The influence of Al2O3 particulate reinforcement on cyclic stress response and fracture behavior of 6061 aluminum alloy. Applied Composite Materials, 1995, 2, 175-198.	1.3	1
77	Low cycle fatigue and fracture behaviour of cast Cu–Pb alloys. Materials Science and Technology, 1994, 10, 640-646.	0.8	11
78	Hydrogen effects on beryllium-copper alloys. Journal of Materials Science Letters, 1993, 12, 1288-1289.	0.5	0
79	The influence of alloy composition on microstructure and tensile behaviour of copper-lead alloys. Journal of Materials Science, 1993, 28, 4615-4622.	1.7	3
80	Microstructural evolution and mechanical properties of SiC/Al2O3 particulate-reinforced spray-deposited metal-matrix composites. Journal of Materials Science, 1993, 28, 2245-2259.	1.7	107
81	Rapid solidification processing with specific application to aluminium alloys. International Materials Reviews, 1992, 37, 1-44.	9.4	290
82	Role of phosphorus content on porosity of cast irons. Journal of Materials Science, 1992, 27, 869-875.	1.7	3
83	High Strain Cyclic Fatigue and Fracture Behavior of a SiC Reinforced Cast Aluminum Alloy Composite. Materials Transactions, JIM, 1991, 32, 473-479.	0.9	7
84	Cyclic stress response characteristics and fracture behaviour of aluminium alloy 2090. Materials Science and Technology, 1991, 7, 991-997.	0.8	6
85	Processing techniques for particulate-reinforced metal aluminium matrix composites. Journal of Materials Science, 1991, 26, 5965-5978.	1.7	166
86	The presence and consequences of precipitatefree zones in an aluminium-copper-lithium alloy. Journal of Materials Science, 1991, 26, 940-950.	1.7	21
87	An experimental technique for the evaluation of properties of ice. Journal of Materials Research, 1991, 6, 1919-1925.	1.2	4
88	General Corrosion Characteristics of a Quaternary Aluminum-Lithium Alloy in Aqueous Environments. Materials Transactions, JIM, 1990, 31, 478-486.	0.9	1
89	Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys. Journal of Materials Science, 1990, 25, 1137-1158.	1.7	214
90	Weldability of aluminium-lithium alloy 2090 using laser welding. Journal of Materials Science, 1990, 25, 3347-3358.	1.7	48

#	Article	IF	CITATIONS
91	Environment-tensile property relationship in AISI 1018 steel. Journal of Materials Science Letters, 1990, 9, 1300-1303.	0.5	0
92	CASTING ALUMINUM-LITHIUM ALLOYS IN OPEN ATMOSPHERE. Materials and Manufacturing Processes, 1990, 5, 109-119.	2.7	5
93	An experimental evaluation of the tensile strength of impact ice. Journal of Materials Science Letters, 1989, 8, 1205-1208.	0.5	22
94	Microstructure, tensile properties and fracture behaviour of an Al-Cu-Li-Mg-Zr alloy 8090. Journal of Materials Science, 1989, 24, 1543-1551.	1.7	35
95	Micromechanisms governing fatigue behaviour of lithium containing aluminium alloys. Materials Science and Technology, 1989, 5, 548-555.	0.8	40
96	Mechanisms governing cyclic fracture in an Al–Cu–Li alloy. Materials Science and Technology, 1987, 3, 130-138.	0.8	15
97	Microstructural characterization of two lithium-containing aluminium alloys. Journal of Materials Science, 1986, 21, 1553-1560	1.7	30