Markus Riegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and molecular characterization of five entomopathogenic nematode species and their bacterial symbionts from eastern Australia. BioControl, 2022, 67, 63-74.	0.9	5
2	Substantial rearrangements, singleÂnucleotide frameshift deletion and low diversity in mitogenome of Wolbachia-infected strepsipteran endoparasitoid in comparison to its tephritid hosts. Scientific Reports, 2022, 12, 477.	1.6	1
3	Endosymbionts moderate constrained sex allocation in a haplodiploid thrips species in a temperature-sensitive way. Heredity, 2022, , .	1.2	4
4	Common endosymbionts affect host fitness and sex allocation via egg size provisioning. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212582.	1.2	7
5	Virulence, penetration rate and reproductive potential of entomopathogenic nematodes from eastern Australia in Queensland fruit fly, Bactrocera tryoni. Biological Control, 2022, 169, 104871.	1.4	9
6	Two New Phoretic Species of Heterostigmatic Mites (Acari: Prostigmata: Neopygmephoridae and) Tj ETQq0 0 0	rgBT /Ove 1.0	rlock 10 Tf 50
7	Egg sizeâ€mediated sex allocation and matingâ€regulated reproductive investment in a haplodiploid thrips species. Functional Ecology, 2021, 35, 485-498.	1.7	7
8	Tephritid fruit flies have a large diversity of co-occurring RNA viruses. Journal of Invertebrate Pathology, 2021, 186, 107569.	1.5	15
9	Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition. Evolution; International Journal of Organic Evolution, 2021, 75, 1525-1536.	1.1	6
10	Genome analyses of four Wolbachia strains and associated mitochondria of Rhagoletis cerasi expose cumulative modularity of cytoplasmic incompatibility factors and cytoplasmic hitchhiking across host populations. BMC Genomics, 2021, 22, 616.	1.2	4
11	Host–endoparasitoid–endosymbiont relationships: concealed Strepsiptera provide new twist to Wolbachia in Australian tephritid fruit flies. Environmental Microbiology, 2021, 23, 5587-5604.	1.8	7
12	Vulnerability of island insect pollinator communities to pathogens. Journal of Invertebrate Pathology, 2021, 186, 107670.	1.5	2
13	Major biogeographic barriers in eastern Australia have shaped the population structure of widely distributed Eucalyptus moluccana and its putative subspecies. Ecology and Evolution, 2021, 11, 14828-14842.	0.8	4
14	Sheltered life beneath elytra: three new species of <i>Eutarsopolipus</i> (Acari, Heterostigmatina,) Tj ETQq0 0	0 rgBT_/Ov	erlock 10 Tf 5

15	Temporal changes in the microbiome of stingless bee foragers following colony relocation. FEMS Microbiology Ecology, 2020, 97, .	1.3	16
16	Scientific note on small hive beetle infestation of stingless bee (Tetragonula carbonaria) colony following a heat wave. Apidologie, 2020, 51, 1199-1201.	0.9	8
17	Characterization of the bacterial communities of psyllids associated with Rutaceae in Bhutan by high throughput sequencing. BMC Microbiology, 2020, 20, 215.	1.3	21
18	Tiny hitchhikers and parasites: a review of Australian heterostigmatic mites (Acari: Prostigmata) associated with insects, with description of three new species. Austral Entomology, 2020, 59, 401-421.	0.8	5

#	Article	IF	CITATIONS
19	Parallel Sequencing of Wolbachia wCer2 from Donor and Novel Hosts Reveals Multiple Incompatibility Factors and Genome Stability after Host Transfers. Genome Biology and Evolution, 2020, 12, 720-735.	1.1	14
20	The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 2020, 580, 227-231.	13.7	218
21	Occurrence of honey bee-associated pathogens in Varroa-free pollinator communities. Journal of Invertebrate Pathology, 2020, 171, 107344.	1.5	19
22	A review of the distribution and host plant associations of the platypodine ambrosia beetles (Coleoptera: Curculionidae: Platypodinae) of Australia, with an electronic species identification key . Zootaxa, 2020, 4894, 69-80.	0.2	2
23	Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathogens, 2019, 15, e1007942.	2.1	27
24	Models and Nomenclature for Cytoplasmic Incompatibility: Caution over Premature Conclusions – A Response to Beckmann et al Trends in Genetics, 2019, 35, 397-399.	2.9	33
25	Additions of sugar and nitrogenous fertiliser affect plant nitrogen status and soil microbial communities. Applied Soil Ecology, 2019, 139, 47-55.	2.1	3
26	Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). BMC Microbiology, 2019, 19, 281.	1.3	26
27	Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs. BMC Microbiology, 2019, 19, 287.	1.3	39
28	Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology, 2019, 44, 3-27.	0.7	105
29	High nymphal host density and mortality negatively impact parasitoid complex during an insect herbivore outbreak. Insect Science, 2019, 26, 351-365.	1.5	7
30	A temperate pollinator with high thermal tolerance is still susceptible to heat events predicted under future climate change. Ecological Entomology, 2018, 43, 506-512.	1.1	17
31	Insect threats to food security. Science, 2018, 361, 846-846.	6.0	41
32	Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome, 2018, 6, 85.	4.9	82
33	An ancient and a recent colonization of islands by an Australian sapâ€feeding insect. Journal of Biogeography, 2018, 45, 2389-2399.	1.4	1
34	Primary parasitoids of red scale (<i>Aonidiella aurantii</i>) in Australia and a review of their introductions from Asia. Insect Science, 2017, 24, 150-168.	1.5	3
35	Local coexistence and genetic isolation of three pollinator species on the same fig tree species. Heredity, 2017, 118, 486-490.	1.2	15
36	First confirmed report of a bacterial brood disease in stingless bees. Journal of Invertebrate Pathology, 2017, 144, 7-10.	1.5	19

Markus Riegler

#	Article	IF	CITATIONS
37	Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome, 2017, 5, 13.	4.9	318
38	Unpacking boxes: Integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts. Molecular Phylogenetics and Evolution, 2017, 108, 70-87.	1.2	20
39	Independent cytoplasmic incompatibility induced by <i>Cardinium</i> and <i>Wolbachia</i> maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution; International Journal of Organic Evolution, 2017, 71, 995-1008.	1.1	45
40	Relative Abundance and Strain Diversity in the Bacterial Endosymbiont Community of a Sap-Feeding Insect Across Its Native and Introduced Geographic Range. Microbial Ecology, 2017, 74, 722-734.	1.4	13
41	Feminizing <i>Wolbachia</i> endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species. Evolution Letters, 2017, 1, 232-244.	1.6	33
42	Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome, 2017, 5, 58.	4.9	47
43	Unravelling mummies: cryptic diversity, host specificity, trophic and coevolutionary interactions in psyllid – parasitoid food webs. BMC Evolutionary Biology, 2017, 17, 127.	3.2	14
44	Climate and atmospheric change impacts on sapâ€feeding herbivores: a mechanistic explanation based on functional groups of primary metabolites. Functional Ecology, 2017, 31, 161-171.	1.7	21
45	Diversity and specificity of sapâ€feeding herbivores and their parasitoids on Australian fig trees. Insect Conservation and Diversity, 2017, 10, 107-119.	1.4	4
46	Belowground Ecology of Scarabs Feeding on Grass Roots: Current Knowledge and Future Directions for Management in Australasia. Frontiers in Plant Science, 2016, 7, 321.	1.7	45
47	Above–Belowground Herbivore Interactions in Mixed Plant Communities Are Influenced by Altered Precipitation Patterns. Frontiers in Plant Science, 2016, 7, 345.	1.7	33
48	Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environmental Microbiology, 2016, 18, 2591-2603.	1.8	50
49	Boom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and <scp>CO</scp> ₂ . Clobal Change Biology, 2016, 22, 3632-3641.	4.2	28
50	The hitchhiker's guide to Europe: the infection dynamics of an ongoing <i>Wolbachia</i> invasion and mitochondrial selective sweep in <i>Rhagoletis cerasi</i> . Molecular Ecology, 2016, 25, 1595-1609.	2.0	68
51	Phylogeographic analyses of bacterial endosymbionts in fig homotomids (Hemiptera: Psylloidea) reveal codiversification of both primary and secondary endosymbionts. FEMS Microbiology Ecology, 2016, 92, fiw205.	1.3	19
52	<i>Wolbachia</i> in Parasitoids Attacking Native European and Introduced Eastern Cherry Fruit Flies in Europe. Environmental Entomology, 2016, 45, 1424-1431.	0.7	13
53	Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment. BMC Ecology, 2016, 16, 47.	3.0	19
54	One step ahead: a parasitoid disperses farther and forms a wider geographic population than its fig wasp host. Molecular Ecology, 2016, 25, 882-894.	2.0	27

#	Article	IF	CITATIONS
55	Climate change, nutrition and immunity: Effects of elevated CO 2 and temperature on the immune function of an insect herbivore. Journal of Insect Physiology, 2016, 85, 57-64.	0.9	24
56	Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant and Soil, 2016, 399, 29-39.	1.8	15
57	Delimiting the species within the genus Austroplebeia, an Australian stingless bee, using multiple methodologies. Apidologie, 2016, 47, 76-89.	0.9	15
58	Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biological Invasions, 2016, 18, 197-214.	1.2	31
59	Characterisation of 14 microsatellite markers for the Australian fig psylloid, Mycopsylla fici. Australian Journal of Zoology, 2015, 63, 233.	0.6	2
60	Genetic variation amongst biotypes of <i>Dactylopius tomentosus</i> . Insect Science, 2015, 22, 360-374.	1.5	3
61	Wolbachia pseudogenes and low prevalence infections in tropical but not temperate Australian tephritid fruit flies: manifestations of lateral gene transfer and endosymbiont spillover?. BMC Evolutionary Biology, 2015, 15, 202.	3.2	37
62	Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures. Journal of Experimental Botany, 2015, 66, 613-623.	2.4	28
63	Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia, 2015, 177, 607-617.	0.9	24
64	Phylogenetic placement of <scp>A</scp> ustralian carrion beetles (Coleoptera: <scp>S</scp> ilphidae). Austral Entomology, 2015, 54, 366-375.	0.8	9
65	Anatomy of an outbreak: the biology and population dynamics of a <i>Cardiaspina</i> psyllid species in an endangered woodland ecosystem. Agricultural and Forest Entomology, 2015, 17, 292-301.	0.7	32
66	Characterisation of microsatellite markers for fig-pollinating wasps in the Pleistodontes imperialis species complex. Australian Journal of Zoology, 2015, 63, 122.	0.6	2
67	The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation. Microbial Ecology, 2015, 70, 498-508.	1.4	125
68	Polyploidy versus endosymbionts in obligately thelytokous thrips. BMC Evolutionary Biology, 2015, 15, 23.	3.2	20
69	Double trouble: combined action of meiotic drive and <i>Wolbachia</i> feminization in <i>Eurema</i> butterflies. Biology Letters, 2015, 11, 20150095.	1.0	39
70	Wolbachia Influences the Production of Octopamine and Affects Drosophila Male Aggression. Applied and Environmental Microbiology, 2015, 81, 4573-4580.	1.4	46
71	Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence?. Oecologia, 2014, 176, 1061-1074.	0.9	35
72	Expression patterns of sexâ€determination genes in single male and female embryos of two <i><scp>B</scp>actrocera</i> fruit fly species during early development. Insect Molecular Biology, 2014, 23, 754-767.	1.0	29

#	Article	IF	CITATIONS
73	Tropical tephritid fruit fly community with high incidence of shared <scp><i>W</i></scp> <i>olbachia</i> strains as platform for horizontal transmission of endosymbionts. Environmental Microbiology, 2014, 16, 3622-3637.	1.8	58
74	Susceptibility of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), to entomopathogenic nematodes. Biological Control, 2014, 69, 34-39.	1.4	58
75	Comprehensive transcriptome analysis of early male and female Bactrocera jarvisi embryos. BMC Genetics, 2014, 15, S7.	2.7	11
76	Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique. BMC Genetics, 2014, 15, S9.	2.7	23
77	Do eucalypt plantation management practices create understory reservoirs of scarab beetle pests in the soil?. Forest Ecology and Management, 2013, 306, 275-280.	1.4	18
78	Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Oecologia, 2013, 171, 1025-1035.	0.9	19
79	Interactive direct and plantâ€mediated effects of elevated atmospheric [<scp>CO</scp> ₂] and temperature on a eucalyptâ€feeding insect herbivore. Global Change Biology, 2013, 19, 1407-1416.	4.2	69
80	Genomic Evolution of the Pathogenic Wolbachia Strain, wMelPop. Genome Biology and Evolution, 2013, 5, 2189-2204.	1.1	96
81	Biology and trophic interactions of lucerne aphids. Agricultural and Forest Entomology, 2013, 15, 335-350.	0.7	28
82	Evidence for a recent horizontal transmission and spatial spread of <i><scp>W</scp>olbachia</i> from endemic <i><scp>R</scp>hagoletis cerasi</i> (<scp>D</scp> iptera: <scp>T</scp> ephritidae) to invasive <i><scp>R</scp>hagoletis cingulata</i> in <scp>E</scp> urope. Molecular Ecology, 2013, 22, 4101-4111.	2.0	70
83	Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores. Frontiers in Plant Science, 2013, 4, 445.	1.7	32
84	Root Damage by Insects Reverses the Effects of Elevated Atmospheric CO2 on Eucalypt Seedlings. PLoS ONE, 2013, 8, e79479.	1.1	15
85	Uncovering Wolbachia Diversity upon Artificial Host Transfer. PLoS ONE, 2013, 8, e82402.	1.1	24
86	Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia. BMC Microbiology, 2012, 12, S12.	1.3	48
87	Allele Intersection Analysis: A Novel Tool for Multi Locus Sequence Assignment in Multiply Infected Hosts. PLoS ONE, 2011, 6, e22198.	1.1	22
88	Multiple Wolbachia infections in Rhagoletis pomonella. Entomologia Experimentalis Et Applicata, 2011, 139, 138-144.	0.7	27
89	Mitochondrial phylogenies in the light of pseudogenes and Wolbachia: re-assessment of a bark beetle dataset. ZooKeys, 2010, 56, 269-280.	0.5	24
90	Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress. PLoS Pathogens, 2009, 5, e1000368.	2.1	306

#	Article	IF	CITATIONS
91	Hidden <i>Wolbachia</i> diversity in field populations of the European cherry fruit fly, <i>Rhagoletis cerasi</i> (Diptera, Tephritidae). Molecular Ecology, 2009, 18, 3816-3830.	2.0	96
92	Absence of the symbiont <i>Candidatus</i> Midichloria mitochondrii in the mitochondria of the tick <i>Ixodes holocyclus</i> . FEMS Microbiology Letters, 2009, 299, 241-247.	0.7	28
93	Evidence for lowâ€ŧitre infections in insect symbiosis: <i>Wolbachia</i> in the bark beetle <i>Pityogenes chalcographus</i> (Coleoptera, Scolytinae). Environmental Microbiology, 2009, 11, 1923-1933.	1.8	64
94	A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 2009, 139, 1268-1278.	13.5	1,384
95	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Molecular Ecology Resources, 2009, 9, 1460-1466.	2.2	128
96	Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Molecular Ecology, 2008, 11, 2425-2434.	2.0	109
97	Male Development Time Influences the Strength of Wolbachia-Induced Cytoplasmic Incompatibility Expression in <i>Drosophila melanogaster</i> . Genetics, 2007, 177, 801-808.	1.2	96
98	Evolutionary dynamics of insect symbiont associations. Trends in Ecology and Evolution, 2007, 22, 625-627.	4.2	19
99	The Genus Wolbachia. , 2006, , 547-561.		5
100	Evolutionary Dynamics of w Au-Like Wolbachia Variants in Neotropical Drosophila spp. Applied and Environmental Microbiology, 2006, 72, 826-835.	1.4	50
101	Evidence for a Global Wolbachia Replacement in Drosophila melanogaster. Current Biology, 2005, 15, 1428-1433.	1.8	216
102	Distribution, Expression, and Motif Variability of Ankyrin Domain Genes in Wolbachia pipientis. Journal of Bacteriology, 2005, 187, 5136-5145.	1.0	126
103	New names for old strains? Wolbachia wSim is actually wRi. Genome Biology, 2005, 6, 401.	13.9	11
104	Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements. PLoS Biology, 2004, 2, e69.	2.6	713
105	Wolbachia Transfer from Rhagoletis cerasi to Drosophila simulans : Investigating the Outcomes of Host-Symbiont Coevolution. Applied and Environmental Microbiology, 2004, 70, 273-279.	1.4	78
106	INCIPIENT EVOLUTION OF WOLBACHIA COMPATIBILITY TYPES. Evolution; International Journal of Organic Evolution, 2004, 58, 1901.	1.1	5
107	INCIPIENT EVOLUTION OF WOLBACHIA COMPATIBILITY TYPES. Evolution; International Journal of Organic Evolution, 2004, 58, 1901-1908.	1.1	17
108	Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15042-15045.	3.3	345

Article	IF	CITATIONS
Development ofa Physical and Genetic Map of the Virulent Wolbachia Strain w MelPop. Journal of Bacteriology, 2003, 185, 7077-7084.	1.0	30
Genetic evidence for natural hybridization between the Dutch elm disease pathogensOphiostoma novo-ulmissp.novo-ulmiandO. novo-ulmissp.americana. Plant Pathology, 2002, 51, 78-84.	1.2	43
	ARTICLE Development of Physical and Genetic Map of the Virulent Wolbachia Strain w MelPop. Journal of Bacteriology, 2003, 185, 7077-7084. Genetic evidence for natural hybridization between the Dutch elm disease pathogensOphiostoma novo-ulmissp.novo-ulmissp.americana. Plant Pathology, 2002, 51, 78-84.	ARTICLEIFDevelopment of a Physical and Genetic Map of the Virulent Wolbachia Strain w MelPop. Journal of Bacteriology, 2003, 185, 7077-7084.1.0Genetic evidence for natural hybridization between the Dutch elm disease pathogensOphiostoma novo-ulmissp.novo-ulmiandO. novo-ulmissp.americana. Plant Pathology, 2002, 51, 78-84.1.2

Morphological and genetic identification of the three pine pests of the genus Tomicus (Coleoptera,) Tj ETQq1 1 0.784314 rgBT /Overl