Aaron D Peacock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11313465/publications.pdf Version: 2024-02-01

AARON D PEACOCK

#	Article	IF	CITATIONS
1	Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values. Chemosphere, 2016, 163, 116-124.	8.2	7
2	Uranium Redistribution Due to Water Table Fluctuations in Sandy Wetland Mesocosms. Environmental Science & Technology, 2015, 49, 12214-12222.	10.0	11
3	Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer. Geochimica Et Cosmochimica Acta, 2015, 150, 106-124.	3.9	58
4	Uranium Immobilization in an Iron-Rich Rhizosphere of a Native Wetland Plant from the Savannah River Site under Reducing Conditions. Environmental Science & Technology, 2014, 48, 9270-9278.	10.0	35
5	Profiling In Situ Microbial Community Structure with an Amplification Microarray. Applied and Environmental Microbiology, 2013, 79, 799-807.	3.1	12
6	Spatial Distribution of <i>Geobacteraceae</i> and Sulfateâ€Reducing Bacteria During <i>In Situ</i> Bioremediation of Uranium ontaminated Groundwater. Remediation, 2013, 23, 31-49.	2.4	6
7	Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during <i>In Situ</i> Uranium Reduction. Applied and Environmental Microbiology, 2012, 78, 2966-2972.	3.1	42
8	Fieldâ€scale uranium (VI) bioimmobilization monitored by lipid biomarkers and ¹³ Câ€acetate incorporation. Remediation, 2011, 21, 85-106.	2.4	4
9	Effects of Microbial Community Structure, Terminal Electron Accepting Conditions, and Molybdate on the Extent of U(VI) Reduction in Landfill Aquifer Sediments. Geomicrobiology Journal, 2011, 28, 430-443.	2.0	1
10	Postbiostimulation microbial community structure changes that control the reoxidation of uranium. FEMS Microbiology Ecology, 2010, 74, 184-195.	2.7	19
11	Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. Applied Microbiology and Biotechnology, 2009, 83, 555-565.	3.6	76
12	Inâ€well sediment incubators to evaluate microbial community stability and dynamics following bioimmobilization of uranium. Remediation, 2009, 19, 73-89.	2.4	1
13	Treatment of Nitric Acid-, U(VI)-, and Tc(VII)-Contaminated Groundwater in Intermediate-Scale Physical Models of an In Situ Biobarrier. Environmental Science & Technology, 2009, 43, 1952-1961.	10.0	15
14	Multiply Methylâ€Branched Fatty Acids and Diacids in the Polar Lipids of a Microaerophilic Subsurface Microbial Community. Lipids, 2008, 43, 843-851.	1.7	9
15	Bioâ€Traps Coupled with Molecular Biological Methods and Stable Isotope Probing Demonstrate the In Situ Biodegradation Potential of MTBE and TBA in Gasolineâ€Contaminated Aquifers. Ground Water Monitoring and Remediation, 2008, 28, 47-62.	0.8	42
16	Microbial Community Analysis of Water, Foregut, and Hindgut during Growth of Pacific White Shrimp, <i>Litopenaeus vannamei</i> , in Closedâ€5ystem Aquaculture. Journal of the World Aquaculture Society, 2008, 39, 251-258.	2.4	55
17	Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests. Ecological Indicators, 2008, 8, 818-827.	6.3	25
18	Biogeochemical Processes In Ethanol Stimulated Uranium-contaminated Subsurface Sediments. Environmental Science & Technology, 2008, 42, 4384-4390.	10.0	49

AARON D PEACOCK

#	Article	IF	CITATIONS
19	Changes in Microbial Community Composition and Geochemistry during Uranium and Technetium Bioimmobilization. Applied and Environmental Microbiology, 2007, 73, 5885-5896.	3.1	35
20	Identification and Isolation of a Castellaniella Species Important during Biostimulation of an Acidic Nitrate- and Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2007, 73, 4892-4904.	3.1	55
21	Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico. Chemical Geology, 2007, 238, 168-179.	3.3	36
22	Monitored natural attenuation forum: The use of carbon isotope analysis at MNA sites. Remediation, 2007, 17, 127-137.	2.4	9
23	Uranium removal from groundwater via in situ biostimulation: Field-scale modeling of transport and biological processes. Journal of Contaminant Hydrology, 2007, 93, 216-235.	3.3	152
24	Deep Subsurface Microbial Biomass and Community Structure in Witwatersrand Basin Mines. Geomicrobiology Journal, 2006, 23, 431-442.	2.0	56
25	Application of Nonlinear Analysis Methods for Identifying Relationships Between Microbial Community Structure and Groundwater Geochemistry. Microbial Ecology, 2006, 51, 177-188.	2.8	23
26	Suspension Array Analysis of 16S rRNA from Fe- and SO 4 2 -Reducing Bacteria in Uranium-Contaminated Sediments Undergoing Bioremediation. Applied and Environmental Microbiology, 2006, 72, 4672-4687.	3.1	41
27	Diversity of the Microeukaryotic Community in Sulfide-Rich Zodletone Spring (Oklahoma). Applied and Environmental Microbiology, 2005, 71, 6175-6184.	3.1	68
28	Phospholipid Furan Fatty Acids and Ubiquinone-8: Lipid Biomarkers That May Protect Dehalococcoides Strains from Free Radicals. Applied and Environmental Microbiology, 2005, 71, 8426-8433.	3.1	45
29	Microbiological and Geochemical Heterogeneity in an In Situ Uranium Bioremediation Field Site. Applied and Environmental Microbiology, 2005, 71, 6308-6318.	3.1	220
30	Microbial Incorporation of13C-Labeled Acetate at the Field Scale:Â Detection of Microbes Responsible for Reduction of U(VI). Environmental Science & Technology, 2005, 39, 9039-9048.	10.0	104
31	Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. Journal of Mass Spectrometry, 2004, 39, 922-929.	1.6	64
32	Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): Implications for biogeochemical dynamics in hot-spring systems. Geochimica Et Cosmochimica Acta, 2004, 68, 3157-3169.	3.9	63
33	Biogeochemical Processes and Microbial Characteristics across Groundwaterâ ^{~,} Surface Water Boundaries of the Hanford Reach of the Columbia River. Environmental Science & Technology, 2003, 37, 5127-5134.	10.0	61
34	Carbon isotope signatures of fatty acids in Geobacter metallireducens and Shewanella algae. Chemical Geology, 2003, 195, 17-28.	3.3	65
35	PLANT DIVERSITY, SOIL MICROBIAL COMMUNITIES, AND ECOSYSTEM FUNCTION: ARE THERE ANY LINKS?. Ecology, 2003, 84, 2042-2050.	3.2	991
36	Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 485-490.	1.7	92

#	Article	IF	CITATIONS
37	Forensic Analysis by Comprehensive Rapid Detection of Pathogens and Contamination Concentrated in Biofilms in Drinking Water Systems for Water Resource Protection and Management. Environmental Forensics, 2003, 4, 63-74.	2.6	25
38	Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site. Applied and Environmental Microbiology, 2001, 67, 3149-3160.	3.1	196