
Dana M Small

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic pain precedes disrupted eating behavior in low-back pain patients. PLoS ONE, 2022, 17, e0263527.	1.1	8
2	Neuroimaging and modulation in obesity and diabetes research: 10th anniversary meeting. International Journal of Obesity, 2022, 46, 718-725.	1.6	2
3	Development of MacroPics: A novel food picture set to dissociate the effects of carbohydrate and fat on eating behaviors. Appetite, 2021, 159, 105051.	1.8	4
4	Post-traumatic olfactory loss and brain response beyond olfactory cortex. Scientific Reports, 2021, 11, 4043.	1.6	11
5	Further Evidence that Habitual Consumption of Sucralose with, but Not without, Carbohydrate Alters Glucose Metabolism. Cell Metabolism, 2021, 33, 227-228.	7.2	1
6	Tracking smell loss to identify healthcare workers with SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0248025.	1.1	10
7	Fat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity. Nutrients, 2021, 13, 1203.	1.7	16
8	Dietary lipids as regulators of reward processes: multimodal integration matters. Trends in Endocrinology and Metabolism, 2021, 32, 693-705.	3.1	17
9	Rethinking Food Reward. Annual Review of Psychology, 2020, 71, 139-164.	9.9	149
10	Core Neuropsychological Measures for Obesity and Diabetes Trials: Initial Report. Frontiers in Psychology, 2020, 11, 554127.	1.1	7
11	No modulation of postprandial metabolism by transcutaneous auricular vagusÂnerve stimulation: a cross-over study in 15 healthy men. Scientific Reports, 2020, 10, 20466.	1.6	15
12	Identification of an Amygdala–Thalamic Circuit That Acts as a Central Gain Mechanism in Taste Perceptions. Journal of Neuroscience, 2020, 40, 5051-5062.	1.7	23
13	No evidence for an association between obesity and milkshake liking. International Journal of Obesity, 2020, 44, 1668-1677.	1.6	7
14	Network organization during probabilistic learning via taste outcomes. Physiology and Behavior, 2020, 223, 112962.	1.0	6
15	Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metabolism, 2020, 31, 773-790.e11.	7.2	52
16	Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans. Cell Metabolism, 2020, 31, 493-502.e7.	7.2	79
17	Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10015-10023.	3.3	42
18	Identification of a brain fingerprint for overweight and obesity. Physiology and Behavior, 2020, 222, 112940.	1.0	21

#	Article	IF	CITATIONS
19	Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes and Endocrinology,the, 2020, 8, 524-534.	5.5	126
20	456. Implementing an At-Home Smell Test for Early Assessment of COVID-19 in High-Risk Healthcare Workers. Open Forum Infectious Diseases, 2020, 7, S295-S296.	0.4	2
21	Neuroendocrinology and brain imaging. Journal of Neuroendocrinology, 2020, 32, e12927.	1.2	0
22	Extreme spicy food cravers displayed increased brain activity in response to pictures of foods containing chili peppers: an fMRI study. Appetite, 2019, 142, 104379.	1.8	19
23	A Brief Neuropsychological Battery for Measuring Cognitive Functions Associated with Obesity. Obesity, 2019, 27, 1988-1996.	1.5	11
24	Processed foods and food reward. Science, 2019, 363, 346-347.	6.0	113
25	Effects of adiposity and metabolic dysfunction on cognition: A review. Physiology and Behavior, 2019, 208, 112578.	1.0	50
26	Good practice in food-related neuroimaging. American Journal of Clinical Nutrition, 2019, 109, 491-503.	2.2	56
27	Dopamine and diet-induced obesity. Nature Neuroscience, 2019, 22, 1-2.	7.1	48
28	Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans. Cell Metabolism, 2019, 29, 695-706.e4.	7.2	69
29	Accumulating Data to Optimally Predict Obesity Treatment (ADOPT): Recommendations from the Biological Domain. Obesity, 2018, 26, S25-S34.	1.5	23
30	Diet, Obesity, and Physical Inactivity. , 2018, , 117-141.		5
31	Sweet taste potentiates the reinforcing effects of e-cigarettes. European Neuropsychopharmacology, 2018, 28, 1089-1102.	0.3	26
32	Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metabolism, 2018, 28, 33-44.e3.	7.2	180
33	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
34	DRD2: Bridging the Genome and Ingestive Behavior. Trends in Cognitive Sciences, 2017, 21, 372-384.	4.0	40
35	Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Current Biology, 2017, 27, 2476-2485.e6.	1.8	67
36	Reorganization of brain connectivity in obesity. Human Brain Mapping, 2017, 38, 1403-1420.	1.9	65

#	Article	IF	CITATIONS
37	Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Frontiers in Neuroscience, 2017, 11, 134.	1.4	21
38	Complex mechanisms linking neurocognitive dysfunctionÂto insulin resistance and other metabolic dysfunction. F1000Research, 2016, 5, 353.	0.8	68
39	Editorial overview: Diet, behavior and brain function: You are what you eat: Effects of the modern food environment on brain and behavior. Current Opinion in Behavioral Sciences, 2016, 9, v-viii.	2.0	Ο
40	Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiology and Behavior, 2016, 162, 37-45.	1.0	84
41	Effects of the modern food environment on striatal function, cognition and regulation of ingestive behavior. Current Opinion in Behavioral Sciences, 2016, 9, 97-105.	2.0	12
42	Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity. Diabetologia, 2016, 59, 2622-2631.	2.9	39
43	Micturition Drive is Associated with Decreased Brain Response to Palatable Milkshake in the Human Anterior Insular Cortex. Chemosensory Perception, 2016, 9, 174-181.	0.7	0
44	Fatty acid amide supplementation decreases impulsivity in young adult heavy drinkers. Physiology and Behavior, 2016, 155, 131-140.	1.0	10
45	Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chemical Senses, 2016, 41, 233-248.	1.1	28
46	Weighing the evidence: Variance in brain responses to milkshake receipt is predictive of eating behavior. NeuroImage, 2016, 128, 273-283.	2.1	31
47	"White Paper―meeting summary and catalyst for future inquiry:ÂComplex mechanisms linking neurocognitive dysfunctionAto insulin resistance and other metabolic dysfunction. F1000Research, 2016, 5, 353.	0.8	69
48	Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum. Synapse, 2015, 69, 195-202.	0.6	53
49	What Can the Brain Teach Us about Winemaking? An fMRI Study of Alcohol Level Preferences. PLoS ONE, 2015, 10, e0119220.	1.1	26
50	Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology and Behavior, 2015, 152, 381-388.	1.0	98
51	Autism Spectrum Disorder: Sniffing Out a New Biomarker. Current Biology, 2015, 25, R674-R676.	1.8	8
52	Greater perceived ability to form vivid mental images in individuals with high compared to low BMI. Appetite, 2015, 91, 185-189.	1.8	11
53	Basolateral Amygdala Response to Food Cues in the Absence of Hunger Is Associated with Weight Gain Susceptibility. Journal of Neuroscience, 2015, 35, 7964-7976.	1.7	124
54	The effect of verbal context on olfactory neural responses. Human Brain Mapping, 2014, 35, 810-818.	1.9	26

#	Article	IF	CITATIONS
55	Decreased food pleasure and disrupted satiety signals in chronic low back pain. Pain, 2014, 155, 712-722.	2.0	33
56	Introduction to the 2013 SSIB Special Issue. Physiology and Behavior, 2014, 136, 1-2.	1.0	0
57	Working memory and reward association learning impairments in obesity. Neuropsychologia, 2014, 65, 146-155.	0.7	158
58	The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiology and Behavior, 2014, 136, 63-73.	1.0	59
59	Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiology and Behavior, 2013, 121, 103-111.	1.0	125
60	An Introduction to the Special Issue. Biological Psychiatry, 2013, 73, 799-801.	0.7	3
61	Sensory Neuroscience: Taste Responses in Primary Olfactory Cortex. Current Biology, 2013, 23, R157-R159.	1.8	23
62	Verbal descriptors influence hypothalamic response to low-calorie drinks. Molecular Metabolism, 2013, 2, 270-280.	3.0	16
63	Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite, 2013, 60, 168-174.	1.8	48
64	Metabolic Regulation of Brain Response to Food Cues. Current Biology, 2013, 23, 878-883.	1.8	89
65	Neural Correlates of Stress- and Food Cue–Induced Food Craving in Obesity. Diabetes Care, 2013, 36, 394-402.	4.3	165
66	Altered hypothalamic response to food in smokers. American Journal of Clinical Nutrition, 2013, 97, 15-22.	2.2	68
67	A question of taste. Neurology, 2013, 80, 1265-1265.	1.5	Ο
68	Ventromedial Prefrontal Cortex Response to Concentrated Sucrose Reflects Liking Rather Than Sweet Quality Coding. Chemical Senses, 2013, 38, 585-594.	1.1	37
69	Flavor is in the brain. Physiology and Behavior, 2012, 107, 540-552.	1.0	239
70	Neuroimaging the interaction of mind and metabolism in humans. Molecular Metabolism, 2012, 1, 10-20.	3.0	11
71	Orosensory and Homeostatic Functions of the Insular Taste Cortex. Chemosensory Perception, 2012, 5, 64-79.	0.7	54
72	An fMRI Study of the Interactions Between the Attention and the Gustatory Networks. Chemosensory Perception, 2012, 5, 117-127.	0.7	18

#	Article	IF	CITATIONS
73	An Introduction to this Special Issue: Neuroimaging in the Chemical Senses. Chemosensory Perception, 2012, 5, 1-1.	0.7	1
74	Modality-Specific Neural Effects of Selective Attention to Taste and Odor. Chemical Senses, 2011, 36, 747-760.	1,1	76
75	The Anterior Insular Cortex Represents Breaches of Taste Identity Expectation. Journal of Neuroscience, 2011, 31, 14735-14744.	1.7	68
76	Youth at Risk for Obesity Show Greater Activation of Striatal and Somatosensory Regions to Food. Journal of Neuroscience, 2011, 31, 4360-4366.	1.7	298
77	A Proposed Model of a Flavor Modality. Frontiers in Neuroscience, 2011, , 717-738.	0.0	10
78	Taste representation in the human insula. Brain Structure and Function, 2010, 214, 551-561.	1.2	246
79	The insular taste cortex contributes to odor quality coding. Frontiers in Human Neuroscience, 2010, 4, .	1.0	38
80	Genetically Determined Differences in Brain Response to a Primary Food Reward. Journal of Neuroscience, 2010, 30, 2428-2432.	1.7	78
81	Neural correlates of evaluative compared with passive tasting. European Journal of Neuroscience, 2009, 30, 327-338.	1.2	77
82	The Role of the Parabrachial Nucleus in Taste Processing and Feeding. Annals of the New York Academy of Sciences, 2009, 1170, 372-377.	1.8	42
83	Symposium Overview. Annals of the New York Academy of Sciences, 2009, 1170, 343-346.	1.8	31
84	Separate signals for orthonasal vs. retronasal perception of food but not nonfood odors Behavioral Neuroscience, 2009, 123, 481-489.	0.6	38
85	Flavor and the Formation of Category-Specific Processing in Olfaction. Chemosensory Perception, 2008, 1, 136-146.	0.7	44
86	Sleep deprivation alters functioning within the neural network underlying the covert orienting of attention. Brain Research, 2008, 1217, 148-156.	1.1	46
87	Modulation of the spatial attention network by incentives in healthy aging and mild cognitive impairment. Neuropsychologia, 2008, 46, 2943-2948.	0.7	24
88	Separable Substrates for Anticipatory and Consummatory Food Chemosensation. Neuron, 2008, 57, 786-797.	3.8	161
89	The Spatial Attention Network Interacts with Limbic and Monoaminergic Systems to Modulate Motivation-Induced Attention Shifts. Cerebral Cortex, 2008, 18, 2604-2613.	1.6	232
90	Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study Journal of Abnormal Psychology, 2008, 117, 924-935.	2.0	675

#	Article	IF	CITATIONS
91	Trying to Detect Taste in a Tasteless Solution: Modulation of Early Gustatory Cortex by Attention to Taste. Chemical Senses, 2007, 32, 569-581.	1.1	167
92	The Role of the Human Orbitofrontal Cortex in Taste and Flavor Processing. Annals of the New York Academy of Sciences, 2007, 1121, 136-151.	1.8	81
93	Increased taste intensity perception exhibited by patients with chronic back pain. Pain, 2006, 120, 124-130.	2.0	38
94	Perceptual differences between chemical stimuli presented through the ortho- or retronasal route. Flavour and Fragrance Journal, 2006, 21, 42-47.	1.2	67
95	Central Gustatory Processing in Humans. , 2006, 63, 191-220.		62
96	The chemical senses. , 2006, , 125-172.		9
97	Taste and olfactory intensity perception changes following left insular stroke Behavioral Neuroscience, 2005, 119, 1693-1700.	0.6	93
98	Odor/taste integration and the perception of flavor. Experimental Brain Research, 2005, 166, 345-357.	0.7	556
99	Monetary Incentives Enhance Processing in Brain Regions Mediating Top-down Control of Attention. Cerebral Cortex, 2005, 15, 1855-1865.	1.6	228
100	Differential Neural Responses Evoked by Orthonasal versus Retronasal Odorant Perception in Humans. Neuron, 2005, 47, 593-605.	3.8	385
101	A Heteromodal Large-Scale Network for Spatial Attention. , 2005, , 29-34.		7
102	Experience-Dependent Neural Integration of Taste and Smell in the Human Brain. Journal of Neurophysiology, 2004, 92, 1892-1903.	0.9	334
103	Crossmodal integration – insights from the chemical senses. Trends in Neurosciences, 2004, 27, 120-123.	4.2	51
104	Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage, 2003, 19, 1709-1715.	2.1	522
105	Dissociation of Neural Representation of Intensity and Affective Valuation in Human Gustation. Neuron, 2003, 39, 701-711.	3.8	707
106	Toward an Understanding of the Brain Substrates of Reward in Humans. Neuron, 2002, 33, 668-671.	3.8	26
107	Human cortical gustatory areas. NeuroReport, 1999, 10, 7-13.	0.6	416
108	Flavor processing. NeuroReport, 1997, 8, 3913-3917.	0.6	252

#	Article	IF	CITATIONS
109	A Role for the Right Anterior Temporal Lobe in Taste Quality Recognition. Journal of Neuroscience, 1997, 17, 5136-5142.	1.7	146
110	Tables of dâ \in ^{IM} for detection and localization. Perception & Psychophysics, 1968, 3, 321-323.	2.3	3
111	The Dopamine Receptor Subtype 2 (DRD2) Regulates the Central Reinforcing Actions of Dietary Lipids in Humans and Rodents. SSRN Electronic Journal, 0, , .	0.4	1