List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of different milling mechanical forces on the structures and properties of wheat flour. International Journal of Food Science and Technology, 2022, 57, 1945-1953.	1.3	5
2	Biochemical properties of type I sourdough affected by wheat bran dietary fibre during fermentation. International Journal of Food Science and Technology, 2022, 57, 1995-2002.	1.3	4
3	Nutritional composition and physicochemical properties of oat flour sieving fractions with different particle size. LWT - Food Science and Technology, 2022, 154, 112757.	2.5	17
4	Effect of synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae on thermal properties of wheat bran dietary fiber-wheat starch system. Food Chemistry, 2022, 373, 131417.	4.2	21
5	Study of the ball milling condition effect on physicochemical and structural characteristics of wheat flour. Journal of Food Processing and Preservation, 2022, 46, .	0.9	1
6	Isolation, purification, and characterization of the globulin from wheat germ. International Journal of Food Science and Technology, 2022, 57, 1708-1717.	1.3	4
7	Recent advances in the technology of quickâ€frozen baozi: a review. International Journal of Food Science and Technology, 2022, 57, 1493-1507.	1.3	2
8	Understanding macromolecular interactions: key to developing new cerealâ€based foods. International Journal of Food Science and Technology, 2022, 57, 1847-1848.	1.3	0
9	Effect of black rice flour with different particle sizes on frozen dough and steamed bread quality. International Journal of Food Science and Technology, 2022, 57, 1748-1762.	1.3	11
10	A review of wheat starch analyses: Methods, techniques, structure and function. International Journal of Biological Macromolecules, 2022, 203, 130-142.	3.6	24
11	A promising strategy for mechanically modified wheat flour by milling of wheat endosperm. Journal of Cereal Science, 2022, 104, 103440.	1.8	3
12	Supplementation of wheat flour products with wheat bran dietary fiber: Purpose, mechanisms, and challenges. Trends in Food Science and Technology, 2022, 123, 281-289.	7.8	49
13	Mechanochemical effects on the structural properties of wheat starch during vibration ball milling of wheat endosperm. International Journal of Biological Macromolecules, 2022, 206, 306-312.	3.6	13
14	Wheat bran dietary fibreâ€induced changes in gluten aggregation and conformation in a dough system. International Journal of Food Science and Technology, 2021, 56, 86-92.	1.3	8
15	Influence of wheat bran dietary fiber on gluten protein structure during dough fermentation. Journal of Food Processing and Preservation, 2021, 45, .	0.9	6
16	Effect of wheat bran dietary fibre on the rheological properties of dough during fermentation and Chinese steamed bread quality. International Journal of Food Science and Technology, 2021, 56, 1623-1630.	1.3	22
17	Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. International Journal of Biological Macromolecules, 2021, 177, 474-484.	3.6	69
18	Effect of baked wheat germ on the rheology and fermentation properties of steamed bread dough. Journal of Food Processing and Preservation, 2021, 45, e15546.	0.9	3

#	Article	IF	CITATIONS
19	Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges—A review. Food Chemistry, 2021, 360, 130038.	4.2	71
20	Effect of wheat bran dietary fiber on structural properties of wheat starch after synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae. International Journal of Biological Macromolecules, 2021, 190, 86-92.	3.6	14
21	Microstructure observation of multilayers separated from wheat bran. Grain & Oil Science and Technology, 2021, 4, 165-173.	2.0	4
22	Effects of particle size on the quality attributes of wheat flour made by the milling process. Cereal Chemistry, 2020, 97, 172-182.	1.1	18
23	Small and large strain rheology of gluten and gluten–starch doughs containing wheat bran dietary fiber. Journal of the Science of Food and Agriculture, 2020, 100, 177-183.	1.7	20
24	Effect of different treatment methods on protein aggregation characteristics in wheat flour maturation. International Journal of Food Science and Technology, 2020, 55, 2011-2019.	1.3	7
25	Quality deterioration and improvement of wheat gluten protein in frozen dough. Grain & Oil Science and Technology, 2020, 3, 29-37.	2.0	32
26	Aggregation characteristics of protein during wheat flour maturation. Journal of the Science of Food and Agriculture, 2019, 99, 719-725.	1.7	20
27	Effect of baked wheat germ on gluten protein network in steamed bread dough. International Journal of Food Science and Technology, 2019, 54, 2839-2846.	1.3	14
28	Gluten aggregation behavior in gluten and gluten-starch doughs after wheat bran dietary fiber addition. LWT - Food Science and Technology, 2019, 106, 1-6.	2.5	41
29	Impact of wheat bran dietary fiber on gluten and gluten-starch microstructure formation in dough. Food Hydrocolloids, 2019, 95, 292-297.	5.6	73
30	The thermal stability, structural changeability, and aggregability of glutenin and gliadin proteins induced by wheat bran dietary fiber. Food and Function, 2019, 10, 172-179.	2.1	44
31	Influence of Wheat Starch on the Structural Changes and Size Distribution of Cluten Induced by Adding Wheat Bran Dietary Fiber. Starch/Staerke, 2018, 70, 1700302.	1.1	22
32	Effect of modified dietary fibre from wheat bran on the quality of noodle. Quality Assurance and Safety of Crops and Foods, 2018, 10, 61-68.	1.8	10
33	Effects of Fermented Wheat Bran on Flour, Dough, and Steamed Bread Characteristics. Journal of Chemistry, 2018, 2018, 1-7.	0.9	8
34	Rheological properties of gluten and glutenâ€starch model doughs containing wheat bran dietary fibre. International Journal of Food Science and Technology, 2018, 53, 2650-2656.	1.3	28
35	Relationship of Moisture Status and Quality Characteristics of Fresh Wet Noodles Prepared from Different Grade Wheat Flours from Flour Milling Streams. Journal of Chemistry, 2018, 2018, 1-8.	0.9	66
36	Application and Development Prospects of Dietary Fibers in Flour Products. Journal of Chemistry, 2017, 1-8.	0.9	16

#	Article	IF	CITATIONS
37	Modification and Application of Dietary Fiber in Foods. Journal of Chemistry, 2017, 2017, 1-8.	0.9	79
38	Improvement of Chinese noodle quality by supplementation with arabinoxylans from wheat bran. International Journal of Food Science and Technology, 2016, 51, 602-608.	1.3	27
39	The influence of ultrasonic modification on arabinoxylans properties obtained from wheat bran. International Journal of Food Science and Technology, 2016, 51, 2338-2344.	1.3	23
40	Physicochemical properties of wheat grains affected by after-ripening. Quality Assurance and Safety of Crops and Foods, 2016, 8, 189-194.	1.8	2
41	Effect of mechanically damaged starch from wheat flour on the quality of frozen dough and steamed bread. Food Chemistry, 2016, 202, 120-124.	4.2	90
42	Effect of A- and B-type granules on the physical properties of starch from six wheat varieties. Quality Assurance and Safety of Crops and Foods, 2015, 7, 531-536.	1.8	5
43	Improvement of the quality of steamed bread by supplementation of wheat germ from milling process. Journal of Cereal Science, 2014, 60, 589-594.	1.8	34
44	Kinetic modeling of Maillard reaction system subjected to pulsed electric field. Innovative Food Science and Emerging Technologies, 2013, 20, 121-125.	2.7	11
45	Effect of Electric Field Treatments on Brandy Aging in Oak Barrels. Food and Bioprocess Technology, 2013, 6, 1635-1643.	2.6	28
46	Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydrate Polymers, 2013, 98, 750-753.	5.1	79
47	Pulsed electric field-assisted modification of pectin from sugar beet pulp. Carbohydrate Polymers, 2013, 92, 1700-1704.	5.1	34
48	Physicochemical properties of sugar beet pulp pectin by pulsed electric field treatment. International Journal of Food Science and Technology, 2012, 47, 2538-2544.	1.3	21
49	High-intensity ultrasound irradiated modification of sugarcane bagasse cellulose in an ionic liquid. Industrial Crops and Products, 2012, 35, 135-139.	2.5	30