Chris Clarkson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cosmological gravitational wave background from primordial density perturbations. Physical Review D, 2007, 75, .	4.7	390
2	Reconstruction of dark energy and expansion dynamics using Gaussian processes. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 036-036.	5.4	295
3	A General Test of the Copernican Principle. Physical Review Letters, 2008, 101, 011301.	7.8	202
4	Fundamental physics with the Square Kilometre Array. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	179
5	Dynamical dark energy or simply cosmic curvature?. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 011-011.	5.4	161
6	Does the growth of structure affect our dynamical models of the Universe? The averaging, backreaction, and fitting problems in cosmology. Reports on Progress in Physics, 2011, 74, 112901.	20.1	161
7	Time Drift of Cosmological Redshifts as a Test of the Copernican Principle. Physical Review Letters, 2008, 100, 191303.	7.8	145
8	HIRAX: a probe of dark energy and radio transients. Proceedings of SPIE, 2016, , .	0.8	134
9	Inhomogeneity and the foundations of concordance cosmology. Classical and Quantum Gravity, 2010, 27, 124008.	4.0	120
10	Covariant perturbations of Schwarzschild black holes. Classical and Quantum Gravity, 2003, 20, 3855-3884.	4.0	108
11	Consistency Tests for the Cosmological Constant. Physical Review Letters, 2008, 101, 181301.	7.8	105
12	Model independent tests of the standard cosmological model. Physical Review D, 2010, 81, .	4.7	104
13	(Mis)interpreting supernovae observations in a lumpy universe. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1121-1136.	4.4	94
14	Covariant approach for perturbations of rotationally symmetric spacetimes. Physical Review D, 2007, 76, .	4.7	93
15	Beyond the plane-parallel and Newtonian approach: wide-angle redshift distortions and convergence in general relativity. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 025-025.	5.4	92
16	Detecting Extra Dimensions with Gravity-Wave Spectroscopy: The Black-String Brane World. Physical Review Letters, 2005, 94, 121302.	7.8	87
17	Using <mml:math inline"="" xmins:mml="http://www.w3.org/1998/Math/MathML
display="><mml:mi>H</mml:mi><mml:mo stretchy="false">(<mml:mi>z</mml:mi><mml:mo) 0.784314="" 1="" 10="" 50="" 9<br="" etqq1="" overlock="" rgbt="" tf="" tj=""></mml:mo)></mml:mo </mml:math>	7 Td4stretc	hy-≴'≴alse">]<
18	D, 2012, 86, . Establishing homogeneity of the universe in the shadow of dark energy. Comptes Rendus Physique, 2012, 13, 682-718.	0.9	79

#	Article	IF	CITATIONS
19	Null tests of the cosmological constant using supernovae. Physical Review D, 2014, 89, .	4.7	79
20	Evidence for a lower value for <i>H</i> 0 from cosmic chronometers data?. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 441, L11-L15.	3.3	75
21	Perturbation theory in Lemaȋtre-Tolman-Bondi cosmology. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 025-025.	5.4	71
22	Direct Reconstruction of Dark Energy. Physical Review Letters, 2010, 104, 211301.	7.8	68
23	Observed galaxy number counts on the lightcone up to second order: I. Main result. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 037-037.	5.4	67
24	Antilensing: The Bright Side of Voids. Physical Review Letters, 2013, 110, 021302.	7.8	60
25	Is backreaction really small within concordance cosmology?. Classical and Quantum Gravity, 2011, 28, 164010.	4.0	59
26	Testing the Copernican principle by constraining spatial homogeneity. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 438, L6-L10.	3.3	59
27	Scalar field and electromagnetic perturbations on locally rotationally symmetric spacetimes. Classical and Quantum Gravity, 2004, 21, 5587-5607.	4.0	58
28	The cosmic microwave background in an inhomogeneous universe. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 013-013.	5.4	57
29	Influence of structure formation on the cosmic expansion. Physical Review D, 2009, 80, .	4.7	52
30	A gravitational wave window on extra dimensions. Classical and Quantum Gravity, 2007, 24, F33-F40.	4.0	51
31	Cosmology with Doppler lensing. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1900-1915.	4.4	51
32	Observed galaxy number counts on the lightcone up to second order: II. Derivation. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 013-013.	5.4	47
33	Does the isotropy of the CMB imply a homogeneous universe? Some generalized EGS theorems. Classical and Quantum Gravity, 1999, 16, 3781-3794.	4.0	43
34	Undermining the cosmological principle: almost isotropic observations in inhomogeneous cosmologies. Classical and Quantum Gravity, 2000, 17, 5047-5078.	4.0	42
35	The cosmological background of vector modes. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 023-023.	5.4	42
36	Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification: II. Derivation. Classical and Quantum Gravity, 2014, 31, 205001.	4.0	42

#	Article	IF	CITATIONS
37	Gravitational waves generated by second order effects during inflation. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 003-003.	5.4	41
38	Model independent constraints on the cosmological expansion rate. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 044-044.	5.4	41
39	Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification: I. Key results. Classical and Quantum Gravity, 2014, 31, 202001.	4.0	39
40	How does the cosmic large-scale structure bias the Hubble diagram?. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 062-062.	5.4	38
41	A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 034-034.	5.4	38
42	The Electromagnetic Signature of Black Hole Ringâ€Đown. Astrophysical Journal, 2004, 613, 492-505.	4.5	36
43	Vector modes generated by primordial density fluctuations. Physical Review D, 2008, 77, .	4.7	36
44	Rendering dark energy void. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	35
45	THE EFFECT OF WEAK LENSING ON DISTANCE ESTIMATES FROM SUPERNOVAE. Astrophysical Journal, 2014, 780, 24.	4.5	35
46	Do we care about the distance to the CMB? Clarifying the impact of second-order lensing. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 050-050.	5.4	35
47	Cosmological ensemble and directional averages of observables. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 040-040.	5.4	34
48	Bias and scatter in the Hubble diagram from cosmological large-scale structure. Physical Review D, 2019, 100, .	4.7	34
49	The dipole of the galaxy bispectrum. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L101-L104.	3.3	32
50	What is the distance to the CMB?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 036-036.	5.4	29
51	Braneworld resonances. Classical and Quantum Gravity, 2005, 22, 3653-3687.	4.0	28
52	Does Small Scale Structure Significantly Affect Cosmological Dynamics?. Physical Review Letters, 2015, 114, 051302.	7.8	28
53	Safely smoothing spacetime: backreaction in relativistic cosmological simulations. Classical and Quantum Gravity, 2019, 36, 014001.	4.0	28
54	Weak-lensing observables in relativistic N-body simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2078-2095.	4.4	28

#	Article	IF	CITATIONS
55	Lensing and time-delay contributions to galaxy correlations. General Relativity and Gravitation, 2016, 48, 1.	2.0	27
56	Dipolar modulation in the size of galaxies: the effect of Doppler magnification. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3936-3951.	4.4	26
57	Non-linear relativistic contributions to the cosmological weak-lensing convergence. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 023-023.	5.4	25
58	Model-independent curvature determination with 21Âcm intensity mapping experiments. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L122-L127.	3.3	25
59	The general relativistic magnetohydrodynamic dynamo equation. Monthly Notices of the Royal Astronomical Society, 2005, 358, 892-900.	4.4	24
60	Dark energy degeneracies in the background dynamics. General Relativity and Gravitation, 2008, 40, 285-300.	2.0	23
61	The Hubble rate in averaged cosmology. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 029-029.	5.4	23
62	Imprints of local lightcone projection effects on the galaxy bispectrum. Part II. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 040-040.	5.4	23
63	The kinematic dipole in galaxy redshift surveys. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 013-013.	5.4	23
64	The Hubble constant tension with next-generation galaxy surveys. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 053-053.	5.4	23
65	Delocalization of brane gravity by a bulk black hole. Classical and Quantum Gravity, 2005, 22, L91-L101.	4.0	22
66	Detecting the relativistic galaxy bispectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 065-065.	5.4	22
67	Observational constraints on the averaged universe. Physical Review D, 2012, 85, .	4.7	21
68	Do primordial lithium abundances imply there's no dark energy?. General Relativity and Gravitation, 2012, 44, 567-579.	2.0	21
69	Imprints of local lightcone projection effects on the galaxy bispectrum. Part III. Relativistic corrections from nonlinear dynamical evolution on large-scales. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 036-036.	5.4	20
70	CMB limits on large-scale magnetic fields in an inhomogeneous universe. Classical and Quantum Gravity, 2003, 20, 1519-1528.	4.0	19
71	Isotropic Blackbody Cosmic Microwave Background Radiation as Evidence for a Homogeneous Universe. Physical Review Letters, 2012, 109, 051303.	7.8	18
72	Galaxy correlations and the BAO in a void universe: structure formation as a test of the Copernican Principle. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 023-023.	5.4	18

#	Article	IF	CITATIONS
73	The Value of <i>H</i> ₀ from Gaussian Processes. Proceedings of the International Astronomical Union, 2014, 10, 25-27.	0.0	18
74	Local primordial non-Gaussianity in the relativistic galaxy bispectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 013.	5.4	18
75	Inhomogeneous Cosmologies, the Copernican Principle and the Cosmic Microwave Background: More on the EGS Theorem. General Relativity and Gravitation, 2003, 35, 969-990.	2.0	17
76	The Copernican principle in light of the latest cosmologicalÂdata. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1291-1302.	4.4	17
77	Detecting the relativistic bispectrum in 21cm intensity maps. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 039.	5.4	16
78	Multipoles of the relativistic galaxy bispectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 018-018.	5.4	16
79	Magnification and evolution biases in large-scale structure surveys. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 009.	5.4	16
80	Cosmological density fluctuations and gravity waves: A covariant approach to gauge-invariant nonlinear perturbation theory. Physical Review D, 2004, 70, .	4.7	15
81	TESTING HOMOGENEITY WITH GALAXY STAR FORMATION HISTORIES. Astrophysical Journal Letters, 2013, 762, L9.	8.3	15
82	General relativistic effects in the galaxy bias at second order. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	5.4	14
83	Imprints of local lightcone projection effects on the galaxy bispectrum IV: second-order vector and tensor contributions. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 004-004.	5.4	12
84	A null test to probe the scale dependence of the growth of structure as a test of general relativity. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 492, L34-L39.	3.3	12
85	Roulettes: a weak lensing formalism for strong lensing: II. Derivation and analysis. Classical and Quantum Gravity, 2016, 33, 245003.	4.0	11
86	Cosmic microwave background and scalar-tensor theories of gravity. Physical Review D, 2001, 64, .	4.7	10
87	Supernovae as probes of cosmic parameters: estimating the bias from under-dense lines of sight. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 020-020.	5.4	10
88	Evolution of linear perturbations in spherically symmetric dust spacetimes. Classical and Quantum Gravity, 2014, 31, 175008.	4.0	10
89	Dodging the dark matter degeneracy while determining the dynamics of dark energy. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 008-008.	5.4	10
90	Observing relativistic features in large-scale structure surveys – II. Doppler magnification in an ensemble of relativistic simulations. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3534-3543.	4.4	10

#	Article	IF	CITATIONS
91	Observing relativistic features in large-scale structure surveys – I. Multipoles of the power spectrum. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2547-2561.	4.4	10
92	Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 010-010.	5.4	8
93	Cosmological evolution of the gravitational entropy of the large-scale structure. General Relativity and Gravitation, 2015, 47, 1.	2.0	8
94	Testing general relativity with the Doppler magnification effect. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3759-3771.	4.4	8
95	Magnetic fields and the cosmic microwave background. Classical and Quantum Gravity, 2001, 18, 1305-1310.	4.0	7
96	Gravity-wave detectors as probes of extra dimensions. General Relativity and Gravitation, 2005, 37, 1681-1687.	2.0	7
97	Roulettes: a weak lensing formalism for strong lensing: I. Overview. Classical and Quantum Gravity, 2016, 33, 16LT01.	4.0	7
98	On the determination of dark energy. AIP Conference Proceedings, 2010, , .	0.4	6
99	Testing foundations of modern cosmology with SKA all-sky surveys. , 2015, , .		6
100	Multi-tasking the growth of cosmological structures. Physics of the Dark Universe, 2021, 34, 100898.	4.9	6
101	Publisher's Note: Cosmological density fluctuations and gravity waves: A covariant approach to gauge-invariant nonlinear perturbation theory [Phys. Rev. D70, 103524 (2004)]. Physical Review D, 2004, 70, .	4.7	5
102	Gravitational waves in the black string braneworld. Classical and Quantum Gravity, 2009, 26, 245004.	4.0	5
103	Probing beyond-Horndeski gravity on ultra-large scales. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 033-033.	5.4	5
104	Null tests of the concordance model in the era of Euclid and the SKA. Physics of the Dark Universe, 2021, 33, 100856.	4.9	5
105	Multi-scale perturbation theory. Part I. Methodology and leading-order bispectrum corrections in the matter-dominated era. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 011-011.	5.4	5
106	Accurately computing weak lensing convergence. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L41-L45.	3.3	4
107	On scaling solutions with a dissipative fluid. Classical and Quantum Gravity, 2002, 19, 3067-3076.	4.0	3
108	Locally extracting scalar, vector and tensor modes in cosmological perturbation theory. Classical and Quantum Gravity, 2011, 28, 225002.	4.0	3

0

#	Article	IF	CITATIONS
109	Publisher's Note: Observational constraints on the averaged universe [Phys. Rev. D 85 , 043506 (2012)]. Physical Review D, 2014, 90, .	4.7	3
110	Anti-symmetric clustering signals in the observed power spectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 003.	5.4	3
111	Locally extracting scalar, vector and tensor modes in cosmological perturbation theory. Classical and Quantum Gravity, 2012, 29, 079601.	4.0	2
112	Reply to Comment on ÂOn scaling solutions with a dissipative fluidÂ. Classical and Quantum Gravity, 2003, 20, 1017-1018.	4.0	1
113	GRAVITY-WAVE DETECTORS AS PROBES OF EXTRA DIMENSIONS. International Journal of Modern Physics D, 2005, 14, 2347-2353.	2.1	1
114	The general theory of secondary weak gravitational lensing. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 033-033.	5.4	1
115	Multi-scale perturbation theory II: Solutions and leading-order bispectrum in the ÅCDM universe. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 048.	5.4	1
116	Photon gas dynamics in the early universe. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 659, 54-57.	4.1	0
117	Baryon acoustic oscillations in a cosmic void. , 2012, , .		0
118	Trouble with physics: Time to ditch Copernicus?. New Scientist, 2013, 217, 43.	0.0	0
119	Recursion relations for gravitational lensing. General Relativity and Gravitation, 2020, 52, 1.	2.0	0

120 DETERMINING DARK ENERGY., 2011, , .