
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1 ^{G93A} mice. British Journal of Pharmacology, 2022, 179, 1732-1752.	5.4	21
2	Repurposing Histaminergic Drugs in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 6347.	4.1	5
3	Vitamin B6 rescues insulin resistance and glucoseâ€induced DNA damage caused by reduced activity of <i>Drosophila</i> PI3K. Journal of Cellular Physiology, 2022, 237, 3578-3586.	4.1	3
4	Functional Inactivation of Drosophila GCK Orthologs Causes Genomic Instability and Oxidative Stress in a Fly Model of MODY-2. International Journal of Molecular Sciences, 2021, 22, 918.	4.1	5
5	Nerve Growth Factor Neutralization Promotes Oligodendrogenesis by Increasing miR-219a-5p Levels. Cells, 2021, 10, 405.	4.1	7
6	What strikes most when we think of Geoff. Purinergic Signalling, 2021, 17, 313-313.	2.2	1
7	Activation of skeletal muscle–resident glial cells upon nerve injury. JCI Insight, 2021, 6, .	5.0	20
8	Where and Why Modeling Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 3977.	4.1	20
9	Drug Repurposing: A Network-based Approach to Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2021, 18, 1678-1691.	4.4	24
10	Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cellular and Molecular Life Sciences, 2021, 78, 6143-6160.	5.4	23
11	Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neuroscience and Biobehavioral Reviews, 2021, 127, 446-458.	6.1	20
12	Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. International Journal of Molecular Sciences, 2021, 22, 10649.	4.1	13
13	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /	Overlock 1 9.1	0 Tf 50 262
14	The Histamine and Multiple Sclerosis Alliance: Pleiotropic Actions and Functional Validation. Current Topics in Behavioral Neurosciences, 2021, , 217-239.	1.7	4
15	S100B Protein as a Therapeutic Target in Multiple Sclerosis: The S100B Inhibitor Arundic Acid Protects from Chronic Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2021, 22, 13558.	4.1	14
16	P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Brain Pathology, 2020, 30, 272-282.	4.1	29
17	Editorial: Dual Role of Microglia in Health and Disease: Pushing the Balance Towards Repair. Frontiers in Cellular Neuroscience, 2020, 14, 259.	3.7	2
18	Duality of P2X7 Receptor in Amyotrophic Lateral Sclerosis. Frontiers in Pharmacology, 2020, 11, 1148.	3.5	13

#	Article	IF	CITATIONS
19	P2X7 Receptor in the Management of Energy Homeostasis: Implications for Obesity, Dyslipidemia, and Insulin Resistance. Frontiers in Endocrinology, 2020, 11, 199.	3.5	17
20	The S100B Inhibitor Pentamidine Ameliorates Clinical Score and Neuropathology of Relapsing—Remitting Multiple Sclerosis Mouse Model. Cells, 2020, 9, 748.	4.1	26
21	Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS. Ageing Research Reviews, 2020, 62, 101121.	10.9	16
22	P2X7 Receptor Agonist 2′(3′)-O-(4-Benzoylbenzoyl)ATP Differently Modulates Cell Viability and Corticostriatal Synaptic Transmission in Experimental Models of Huntington's Disease. Frontiers in Pharmacology, 2020, 11, 633861.	3.5	5
23	Histamine Is an Inducer of the Heat Shock Response in SOD1-G93A Models of ALS. International Journal of Molecular Sciences, 2019, 20, 3793.	4.1	11
24	Stimulation of P2X7 Enhances Whole Body Energy Metabolism in Mice. Frontiers in Cellular Neuroscience, 2019, 13, 390.	3.7	10
25	Histamine beyond its effects on allergy: Potential therapeutic benefits for the treatment of Amyotrophic Lateral Sclerosis (ALS). , 2019, 202, 120-131.		19
26	Functional microglia neurotransmitters in amyotrophic lateral sclerosis. Seminars in Cell and Developmental Biology, 2019, 94, 121-128.	5.0	17
27	Histaminergic transmission slows progression of amyotrophic lateral sclerosis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 872-893.	7.3	27
28	Micropatterned Geometry Shape Oligodendrocyte and Microglia Plasticity. Methods in Molecular Biology, 2018, 1727, 139-154.	0.9	0
29	Commentary: Stephen William Hawking (8 January 1942 – 14 March 2018). CNS and Neurological Disorders - Drug Targets, 2018, 17, 77-77.	1.4	0
30	In memory of Prof. Stephen Drake Skaper. CNS and Neurological Disorders - Drug Targets, 2018, 17, 323-323.	1.4	0
31	Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 1529.	4.8	53
32	Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis. Frontiers in Immunology, 2017, 8, 1689.	4.8	37
33	P2X7 Receptor Activation Modulates Autophagy in SOD1-G93A Mouse Microglia. Frontiers in Cellular Neuroscience, 2017, 11, 249.	3.7	67
34	M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b. Mediators of Inflammation, 2016, 2016, 1-9.	3.0	43
35	Actions of the antihistaminergic clemastine on presymptomatic SOD1-G93A mice ameliorate ALS disease progression. Journal of Neuroinflammation, 2016, 13, 191.	7.2	51
36	Clemastine Confers Neuroprotection and Induces an Anti-Inflammatory Phenotype in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2016, 53, 518-531.	4.0	58

CINZIA VOLONTé

#	Article	IF	CITATIONS
37	MicroRNA-125b regulates microglia activation and motor neuron death in ALS. Cell Death and Differentiation, 2016, 23, 531-541.	11.2	109
38	Purinergic contribution to amyotrophic lateral sclerosis. Neuropharmacology, 2016, 104, 180-193.	4.1	62
39	Editorial (Thematic Issue: MiRNAcles in the Brain: What to Wish and What to Fear). CNS and Neurological Disorders - Drug Targets, 2015, 14, 155-156.	1.4	Ο
40	MicroRNAs: Newcomers into the ALS Picture. CNS and Neurological Disorders - Drug Targets, 2015, 14, 194-207.	1.4	35
41	New Kid on the Block: Does Histamine Get Along with Inflammation in Amyotrophic Lateral Sclerosis?. CNS and Neurological Disorders - Drug Targets, 2015, 14, 677-686.	1.4	8
42	Commentary: (Research Highlights Inflammation, Demyelination and Neurodegeneration: Risky Buddies) Tj ETQ	q0 0 0 rgB	T /Qverlock 10
43	P2Y ₁₂ Receptor on the Verge of a Neuroinflammatory Breakdown. Mediators of Inflammation, 2014, 2014, 1-15.	3.0	65
44	Spinal cord pathology is ameliorated by P2X7 antagonism in SOD1-G93A mouse model of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2014, 7, 1101-9.	2.4	95
45	The NADPH Oxidase Pathway Is Dysregulated by the P2X7 Receptor in the SOD1-G93A Microglia Model of Amyotrophic Lateral Sclerosis. Journal of Immunology, 2013, 190, 5187-5195.	0.8	103
46	Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels. BMC Neuroscience, 2013, 14, 121.	1.9	21
47	Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 4102-4116.	2.9	88
48	P2X3 receptor: a novel â€~CASKade' of signaling?. Journal of Neurochemistry, 2013, 126, 1-3.	3.9	7
49	Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death and Disease, 2013, 4, e959-e959.	6.3	128
50	Commentary-1 Research Highlights (Never Underestimate the Power of Adenosine in Multiple) Tj ETQq0 0 0 rgB	IT /Qverloc	k 10 Tf 50 22
51	Commentary: (Research Highlights: "MiRNAcles―in Brain). CNS and Neurological Disorders - Drug Targets, 2013, 12, 717-718.	1.4	1
52	Commentary (Brilliant Blue G: What a Little More Colour Can Be). CNS and Neurological Disorders - Drug Targets, 2013, 12, 550-551.	1.4	0
53	Commentary: Multifactoriality of Amytrophic Lateral Sclerosis: Linking Unfolded Proteins to Oxidative Stress in Microglia. CNS and Neurological Disorders - Drug Targets, 2013, 999, 1-2.	1.4	0
54	Metabotropic purinergic receptors in lipid membrane microdomains. Current Medicinal Chemistry,	2.4	13

2013, 20, 56-63.

#	Article	IF	CITATIONS
55	Commentary: multifactoriality of amytrophic lateral sclerosis: linking unfolded proteins to oxidative stress in microglia. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1081-2.	1.4	0
56	P2X7 Receptors: Channels, Pores and More. CNS and Neurological Disorders - Drug Targets, 2012, 11, 705-721.	1.4	216
57	Editorial [Pharmacology and Therapeutic Activity of Purinergic Drugs for Disorders of the Nervous System]. CNS and Neurological Disorders - Drug Targets, 2012, 11, 649-651.	1.4	5
58	Purinergic Signalling: What is Missing and Needed Next? The Use of Transgenic Mice, Crystallographic Analysis and MicroRNA. CNS and Neurological Disorders - Drug Targets, 2012, 11, 751-767.	1.4	9
59	Metabotropic Purinergic Receptors in Lipid Membrane Microdomains. Current Medicinal Chemistry, 2012, 20, 56-63.	2.4	16
60	Metabotropic Purinergic Receptors in Lipid Membrane Microdomains. Current Medicinal Chemistry, 2012, 20, 56-63.	2.4	7
61			

#	Article	IF	CITATIONS
73	Receptor webs: Can the chunking theory tell us more about it?. Brain Research Reviews, 2008, 59, 1-8.	9.0	18
74	Do ATP and NO interact in the CNS?. Progress in Neurobiology, 2008, 84, 40-56.	5.7	36
75	Protein cooperation: From neurons to networks. Progress in Neurobiology, 2008, 86, 61-71.	5.7	16
76	P2 Receptor Antagonist Trinitrophenyl-Adenosine-Triphosphate Protects Hippocampus from Oxygen and Glucose Deprivation Cell Death. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 70-77.	2.5	22
77	Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1592-1599.	2.6	47
78	Extracellular adenosine triphosphate induces glutamate transporter-1 expression in hippocampus. Hippocampus, 2007, 17, 305-315.	1.9	21
79	P2Y1 receptor switches to neurons from glia in juvenile versus neonatal rat cerebellar cortex. BMC Developmental Biology, 2007, 7, 77.	2.1	17
80	Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: An immunohistological study. Purinergic Signalling, 2007, 3, 389-398.	2.2	69
81	Oligodendrocytes express P2Y12 metabotropic receptor in adult rat brain. Neuroscience, 2006, 141, 1171-1180.	2.3	44
82	P2X7 Receptor Modulation on Microglial Cells and Reduction of Brain Infarct Caused by Middle Cerebral Artery Occlusion in Rat. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 974-982.	4.3	141
83	The P2Y4 receptor forms homo-oligomeric complexes in several CNS and PNS neuronal cells. Purinergic Signalling, 2006, 2, 575-582.	2.2	23
84	P2 receptor web: Complexity and fine-tuning. , 2006, 112, 264-280.		101
85	A novel pathway of cell growth regulation mediated by a PLA 2 αâ€derived phosphoinositide metabolite. FASEB Journal, 2006, 20, 2567-2569.	0.5	32
86	The Role of Ionotropic Purinergic Receptors (P2X) in Mediating Plasticity Responses in the Central Nervous System. , 2006, 557, 77-100.		13
87	Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia, 2005, 50, 132-144.	4.9	129
88	The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells. Neurobiology of Disease, 2005, 18, 100-109.	4.4	39
89	Differences in the neurotoxicity profile induced by ATP and ATPÎ ³ S in cultured cerebellar granule neurons. Neurochemistry International, 2005, 47, 334-342.	3.8	24
90	Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Research Reviews, 2005, 48, 144-156.	9.0	143

#	Article	IF	CITATIONS
91	ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Research Reviews, 2005, 48, 157-165.	9.0	125
92	P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFα and potential role in myocardial cell death. Journal of Molecular and Cellular Cardiology, 2005, 39, 929-939.	1.9	48
93	Synaptic P2X7 and Oxygen/Glucose Deprivation in Organotypic Hippocampal Cultures. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 392-398.	4.3	69
94	2-ClATP exerts anti-tumoural actions not mediated by P2 receptors in neuronal and glial cell lines. Biochemical Pharmacology, 2004, 67, 621-630.	4.4	8
95	P2X3receptor localizes into lipid rafts in neuronal cells. Journal of Neuroscience Research, 2004, 76, 653-661.	2.9	59
96	Pathways of survival induced by NGF and extracellular ATP after growth factor deprivation. Progress in Brain Research, 2004, 146, 93-100.	1.4	25
97	Role of the metabotropic P2Y4 receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor. Experimental Cell Research, 2004, 300, 149-158.	2.6	33
98	Overexpression of superoxide dismutase 1 protects against Î ² -amyloid peptide toxicity: effect of estrogen and copper chelators. Neurochemistry International, 2004, 44, 25-33.	3.8	53
99	Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia, 2003, 43, 218-230.	4.9	235
100	Up-regulation of p2x2, p2x4 receptor and ischemic cell death: prevention by p2 antagonists. Neuroscience, 2003, 120, 85-98.	2.3	147
101	Extracellular ATP and Neurodegeneration. CNS and Neurological Disorders, 2003, 2, 403-412.	4.3	144
102	P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology, 2002, 42, 489-501.	4.1	131
103	Cerebellar lesion up-regulates P2X1 and P2X2 purinergic receptors in precerebellar nuclei. Neuroscience, 2002, 115, 425-434.	2.3	53
104	Extracellular ATP and nerve growth factor intensify hypoglycemia-induced cell death in primary neurons: role of P2 and NGFRp75 receptors. Journal of Neurochemistry, 2002, 83, 1129-1138.	3.9	45
105	Hypoglycaemia-induced cell death: features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochemistry International, 2001, 38, 199-207.	3.8	61
106	Glucose deprivation and chemical hypoxia: neuroprotection by P2 receptor antagonists. Neurochemistry International, 2001, 38, 189-197.	3.8	63
107	Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience, 2001, 108, 527-534.	2.3	89
108	Effect of P2 purinoceptor antagonists on kainate-induced currents in rat cultured neurons. Brain Research, 2000, 882, 26-35.	2.2	21

#	Article	IF	CITATIONS
109	Antagonists of P2 receptor prevent NGF-dependent neuritogenesis in PC12 cells. Neuropharmacology, 2000, 39, 1083-1094.	4.1	47
110	Neuroprotective effects of modulators of P2 receptors in primary culture of CNS neurones. Neuropharmacology, 1999, 38, 1335-1342.	4.1	49
111	Prevention of Glutamate-Evoked Cytotoxicity. Expert Opinion on Therapeutic Targets, 1997, 1, 97-100.	1.0	Ο
112	Characterization of an ecto-phosphorylated protein of cultured cerebellar granule neurons. , 1997, 47, 500-508.		11
113	Characterization of an ecto-phosphorylated protein of cultured cerebellar granule neurons. Journal of Neuroscience Research, 1997, 47, 500-8.	2.9	1
114	Binding and Functions of Extracellular ATP in Cultured Cerebellar Granule Neurons. Biochemical and Biophysical Research Communications, 1996, 225, 907-914.	2.1	24
115	Selected P2 purinoceptor modulators prevent glutamate-evoked cytotoxicity in cultured cerebellar granule neurons. Journal of Neuroscience Research, 1996, 45, 183-193.	2.9	46
116	Purines and cell death. , 1996, 39, 442-449.		30
117	Nerve growth factor-activated protein kinase N modulates the cAMP-dependent protein kinase. Journal of Neuroscience Research, 1995, 40, 108-116.	2.9	2
118	Stimulation ofvgfgene expression by NGF is mediated through multiple signal transduction pathways involving protein phosphorylation. FEBS Letters, 1995, 360, 106-110.	2.8	14
119	Development of a method for measuring cell number: Application to CNS primary neuronal cultures. Cytometry, 1994, 17, 274-276.	1.8	89
120	LiCl promotes survival of GABAergic neurons from cerebellum and cerebral cortex: LiCl induces survival of GABAergic neurons. Neuroscience Letters, 1994, 172, 6-10.	2.1	19
121	Identification of an Ectokinase Activity in Cerebellar Granule Primary Neuronal Cultures. Journal of Neurochemistry, 1994, 63, 2028-2037.	3.9	19
122	Dexamethasone abolishes the activation by nerve growth factor of protein kinase N: effects of nerve growth factor and dexamethasone on protein kinase N. Neuroscience Letters, 1993, 159, 119-122.	2.1	1
123	Association of a purine-analogue-sensitive protein kinase activity with p75 nerve growth factor receptors Molecular Biology of the Cell, 1993, 4, 71-78.	2.1	40
124	A Purine Analogâ€5ensitive Protein Kinase Activity Associates with Trk Nerve Growth Factor Receptors. Journal of Neurochemistry, 1993, 61, 664-672.	3.9	8
125	Association of protein kinases ERK1 and ERK2 with p75 nerve growth factor receptors. Journal of Biological Chemistry, 1993, 268, 21410-5.	3.4	50
126	Nerve growth factor employs multiple pathways to induce primary response genes in PC12 cells Molecular Biology of the Cell, 1992, 3, 363-371.	2.1	62

#	Article	IF	CITATIONS
127	Gangliosides prevent the inhibition by K-252a of NGF responses in PC12 cells. Developmental Brain Research, 1992, 65, 35-42.	1.7	15
128	6-Methylmercaptopurine Riboside Is a Potent and Selective Inhibitor of Nerve Growth Factor-Activated Protein Kinase N. Journal of Neurochemistry, 1992, 58, 700-708.	3.9	30
129	Nerve growth factor-activated protein kinase N. Characterization and rapid near homogeneity purification by nucleotide affinity-exchange chromatography Journal of Biological Chemistry, 1992, 267, 21663-21670.	3.4	28
130	Rapid measurement of protein kinase and phosphatase activities by slot-filtration. BioTechniques, 1992, 12, 854-8, 860-3.	1.8	6
131	Nerve growth factor-activated protein kinase N. Characterization and rapid near homogeneity purification by nucleotide affinity-exchange chromatography. Journal of Biological Chemistry, 1992, 267, 21663-70.	3.4	26
132	Purine analogs inhibit nerve growth factor-promoted neurite outgrowth by sympathetic and sensory neurons. Journal of Neuroscience, 1990, 10, 1479-1485.	3.6	57
133	Nerve Growth Factor (NGF) Responses by Non-Neuronal Cells: Detection by Assay of a Novel NGF-Activated Protein Kinase. Growth Factors, 1990, 2, 321-331.	1.7	18
134	Induction of ornithine decarboxylase by nerve growth factor in PC12 cells: dissection by purine analogues Journal of Biological Chemistry, 1990, 265, 11050-11055.	3.4	24
135	Nerve Growth Factor (NGF) Responses by Non-Neuronal Cells: Detection by Assay of a Novel NGF-Activated Protein Kinase. Growth Factors, 1990, 2, 321-331.	1.7	1
136	Induction of ornithine decarboxylase by nerve growth factor in PC12 cells: dissection by purine analogues. Journal of Biological Chemistry, 1990, 265, 11050-5.	3.4	22
137	Differential inhibition of nerve growth factor responses by purine analogues: correlation with inhibition of a nerve growth factor-activated protein kinase Journal of Cell Biology, 1989, 109, 2395-2403.	5.2	99
138	Stimulation of Inositol Incorporation into Lipids of PC 12 Cells by Nerve Growth Factor and Bradykinin. Journal of Neurochemistry, 1988, 51, 1156-1162.	3.9	14
139	Lithium Stimulation of Membrane-Bound Phospholipase C from PC 12 Cells Exposed to Nerve Growth Factor. Journal of Neurochemistry, 1988, 51, 1163-1168.	3.9	28
140	Motility, heat, and lactate production in ejaculated bovine sperm. Archives of Biochemistry and Biophysics, 1988, 266, 111-123.	3.0	34
141	Lithium stimulates the binding of GTP to the membranes of PC12 cells cultured with nerve growth factor. Neuroscience Letters, 1988, 87, 127-132.	2.1	19
142	NGF Modulates the Synthesis of a Nuclear Lactic Dehydrogenase with Single-stranded DNA-Binding Properties. Proceedings in Life Sciences, 1986, , 22-28.	0.5	0
143	Synthesis and content of a DNA-binding protein with lactic dehydrogenase activity are reduced by nerve growth factor in the neoplastic cell line PC12. Experimental Cell Research, 1985, 161, 117-129.	2.6	28