Anthony V Bridgwater

List of Publications by Citations

Source: https://exaly.com/author-pdf/1131003/anthony-v-bridgwater-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,979 51 112 111 h-index g-index citations papers 6.6 19,655 112 7.55 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
111	Review of fast pyrolysis of biomass and product upgrading. <i>Biomass and Bioenergy</i> , 2012 , 38, 68-94	5.3	2917
110	Overview of Applications of Biomass Fast Pyrolysis Oil. <i>Energy & Discourt Sensor</i> (18, 590-598)	4.1	2180
109	Fast pyrolysis processes for biomass. <i>Renewable and Sustainable Energy Reviews</i> , 2000 , 4, 1-73	16.2	1258
108	An overview of fast pyrolysis of biomass. <i>Organic Geochemistry</i> , 1999 , 30, 1479-1493	3.1	1253
107	The technical and economic feasibility of biomass gasification for power generation. <i>Fuel</i> , 1995 , 74, 631	- 6 53	733
106	Principles and practice of biomass fast pyrolysis processes for liquids. <i>Journal of Analytical and Applied Pyrolysis</i> , 1999 , 51, 3-22	6	571
105	The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. <i>Fuel</i> , 2008 , 87, 1230-1240	7.1	415
104	Production of renewable phenolic resins by thermochemical conversion of biomass: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2008 , 12, 2092-2116	16.2	391
103	A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. <i>Renewable and Sustainable Energy Reviews</i> , 2002 , 6, 181-246	16.2	391
102	Study on the pyrolytic behaviour of xylan-based hemicellulose using TGHTIR and PytachTIR. Journal of Analytical and Applied Pyrolysis, 2010, 87, 199-206	6	371
101	Catalysis in thermal biomass conversion. <i>Applied Catalysis A: General</i> , 1994 , 116, 5-47	5.1	349
100	Lignin fast pyrolysis: Results from an international collaboration. <i>Journal of Analytical and Applied Pyrolysis</i> , 2010 , 88, 53-72	6	309
99	The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. <i>Fuel</i> , 2007 , 86, 1560-1569	7.1	299
98	Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. <i>Catalysis Today</i> , 1996 , 29, 285-295	5.3	284
97	Review of physicochemical properties and analytical characterization of lignocellulosic biomass. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 76, 309-322	16.2	280
96	Developments in direct thermochemical liquefaction of biomass: 1983-1990. <i>Energy & amp; Fuels</i> , 1991 , 5, 399-410	4.1	260
95	Fast pyrolysis of cassava rhizome in the presence of catalysts. <i>Journal of Analytical and Applied Pyrolysis</i> , 2008 , 81, 72-79	6	256

(2008-2010)

94	A systematic study of the kinetics of lignin pyrolysis. <i>Thermochimica Acta</i> , 2010 , 498, 61-66	2.9	252
93	Effect of the Temperature on the Composition of Lignin Pyrolysis Products. <i>Energy & amp; Fuels</i> , 2010 , 24, 4470-4475	4.1	226
92	State-of-the-art of fast pyrolysis in IEA bioenergy member countries. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 20, 619-641	16.2	223
91	Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines P art 1 : emulsion production. <i>Biomass and Bioenergy</i> , 2003 , 25, 85-99	5.3	218
90	The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. <i>Carbohydrate Polymers</i> , 2010 , 82, 39-45	10.3	208
89	Kinetic study on thermal decomposition of woods in oxidative environment. <i>Fuel</i> , 2009 , 88, 1024-1030	7.1	204
88	Biomass for energy. Journal of the Science of Food and Agriculture, 2006, 86, 1755-1768	4.3	195
87	Influence of particle size on the analytical and chemical properties of two energy crops. <i>Fuel</i> , 2007 , 86, 60-72	7.1	173
86	Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines P art 2: tests in diesel engines. <i>Biomass and Bioenergy</i> , 2003 , 25, 101-111	5.3	163
85	A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. <i>Fuel</i> , 2013 , 108, 216-230	7.1	158
84	Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 82, 2705-2	27152	155
83	Opportunities for biomass pyrolysis liquids production and upgrading. <i>Energy & amp; Fuels</i> , 1992 , 6, 113	-142:10	127
82	CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B. <i>Chemical Engineering Science</i> , 2009 , 64, 1036-1045	4.4	122
81	Upgrading biomass fast pyrolysis liquids. Environmental Progress and Sustainable Energy, 2012, 31, 261-	2 <u>6</u> 8 5	109
80	Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis. Fuel, 2010, 89, 244	I- 2/ 5/3	107
79	Fast pyrolysis of sweet sorghum and sweet sorghum bagasse. <i>Journal of Analytical and Applied Pyrolysis</i> , 1998 , 46, 15-29	6	103
78	Application of CFD to model fast pyrolysis of biomass. Fuel Processing Technology, 2009, 90, 504-512	7.2	101
77	CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors, Part A: Eulerian computation of momentum transport in bubbling fluidised beds. <i>Chemical Engineering Science</i> , 2008 , 63, 4218-4227	4.4	92

76	Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. <i>Biomass and Bioenergy</i> , 2010 , 34, 652-660	5.3	83
75	Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 88, 160-175	16.2	81
74	Prediction of Klason lignin and lignin thermal degradation products by PythC/MS in a collection of Lolium and Festuca grasses. <i>Journal of Analytical and Applied Pyrolysis</i> , 2007 , 80, 16-23	6	81
73	The production of biofuels and renewable chemicals by fast pyrolysis of biomass. <i>International Journal of Global Energy Issues</i> , 2007 , 27, 160	0.3	75
72	Opportunities for biomass-derived Bio-oillin European heat and power markets. <i>Energy Policy</i> , 2006 , 34, 2871-2880	7.2	74
71	Drying technologies for an integrated gasification bio-energy plant. <i>Renewable and Sustainable Energy Reviews</i> , 1999 , 3, 243-289	16.2	70
70	Technoeconomic assessment of biomass to energy. <i>Biomass and Bioenergy</i> , 1995 , 9, 205-226	5.3	70
69	The influence of feedstock drying on the performance and economics of a biomass gasifier Ingine CHP system. <i>Biomass and Bioenergy</i> , 2002 , 22, 271-281	5.3	67
68	Computational modelling of the impact of particle size to the heat transfer coefficient between biomass particles and a fluidised bed. <i>Fuel Processing Technology</i> , 2010 , 91, 68-79	7.2	66
67	Thermochemical characterisation of straws and high yielding perennial grasses. <i>Industrial Crops and Products</i> , 2012 , 36, 449-459	5.9	64
66	Ablative plate pyrolysis of biomass for liquids. <i>Biomass and Bioenergy</i> , 1994 , 7, 147-154	5.3	63
65	Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis. <i>Fuel Processing Technology</i> , 2015 , 138, 184-193	7.2	62
64	Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion. <i>Applied Energy</i> , 2018 , 213, 158-168	3 ^{10.7}	58
63	Biodegradability of biomass pyrolysis oils: Comparison to conventional petroleum fuels and alternatives fuels in current use. <i>Fuel</i> , 2007 , 86, 2679-2686	7.1	58
62	Results of the IEA Round Robin on Viscosity and Stability of Fast Pyrolysis Bio-oils. <i>Energy & Energy & Energy</i>	4.1	55
61	Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. <i>Applied Energy</i> , 2017 , 191, 639-652	10.7	52
60	A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. <i>Energy Conversion and Management</i> , 2018 , 174, 406-416	10.6	51
59	A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. <i>Applied Energy</i> , 2017 , 188, 595-6	03 .7	50

(2007-2016)

58	Using Apparent Activation Energy as a Reactivity Criterion for Biomass Pyrolysis. <i>Energy & amp; Fuels</i> , 2016 , 30, 7834-7841	4.1	50	
57	Techno-economic modelling of biomass flash pyrolysis and upgrading systems. <i>Biomass and Bioenergy</i> , 1994 , 7, 267-273	5.3	50	
56	Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. <i>Fuel Processing Technology</i> , 2018 , 172, 97-105	7.2	49	
55	Impact of Potassium and Phosphorus in Biomass on the Properties of Fast Pyrolysis Bio-oil. <i>Energy & Energy Fuels</i> , 2016 , 30, 8009-8018	4.1	49	
54	Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability. <i>Energy & Energy & En</i>	4.1	49	
53	Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. <i>Bioresource Technology</i> , 2009 , 100, 1252-61	11	48	
52	Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen. <i>Journal of Cleaner Production</i> , 2018 , 187, 390-399	10.3	47	
51	Challenges and Opportunities in Fast Pyrolysis of Biomass: Part I. <i>Johnson Matthey Technology Review</i> , 2018 , 62, 118-130	2.5	45	
50	Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. <i>Bioresource Technology</i> , 2009 , 100, 6428-33	11	45	
49	Physical properties of flash pyrolysis liquids. <i>Biomass and Bioenergy</i> , 1994 , 7, 169-177	5.3	44	
48	Pyrolysis of Rice Husk and Corn Stalk in Auger Reactor. 1. Characterization of Char and Gas at Various Temperatures. <i>Energy & Documents</i> 2016, 30, 10568-10574	4.1	42	
47	Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil. Fuel, 2013, 109, 417-426	7.1	41	
46	Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production. <i>Energy & Energy &</i>	4.1	40	
45	Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin. <i>ChemSusChem</i> , 2017 , 10, 3212-3224	8.3	40	
44	Pillared clays as catalysts for hydrocracking of heavy liquid fuels. <i>Applied Catalysis A: General</i> , 2005 , 282, 205-214	5.1	35	
43	Assessment of liquefaction and pyrolysis systems. <i>Biomass and Bioenergy</i> , 1992 , 2, 279-297	5.3	35	
42	Encapsulation of phase change materials using rice-husk-char. Applied Energy, 2016, 182, 274-281	10.7	35	
41	A comparison of fast and slow pyrolysis liquids from mallee. <i>International Journal of Global Energy Issues</i> , 2007 , 27, 204	0.3	34	

40	Co-pyrolysis of Miscanthus Sacchariflorus and coals: A systematic study on the synergies in thermal decomposition, kinetics and vapour phase products. <i>Fuel</i> , 2020 , 262, 116603	7.1	34
39	Fast pyrolysis processing of surfactant washed Miscanthus. Fuel Processing Technology, 2014 , 128, 94-1	0 3 .2	33
38	Effect of reactor configuration on the yields and structures of pine-wood derived pyrolysis liquids: A comparison between ablative and wire-mesh pyrolysis. <i>Biomass and Bioenergy</i> , 1994 , 7, 155-167	5.3	32
37	The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. <i>Applied Catalysis A: General</i> , 2019 , 570, 218-227	5.1	31
36	CFB air-blown flash pyrolysis. Part I: Engineering design and cold model performance. <i>Fuel</i> , 2007 , 86, 1372-1386	7.1	30
35	Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. <i>Renewable Energy,</i> 2019 , 143, 719-730	8.1	28
34	Production costs of liquid fuels from biomass. <i>Fuel</i> , 1991 , 70, 1209-1224	7.1	28
33	Sequential pyrolysis of willow SRC at low and high heating rates [Implications for selective pyrolysis. <i>Fuel</i> , 2012 , 93, 692-702	7.1	27
32	Pilot-scale combustion of fast-pyrolysis bio-oil: Ash deposition and gaseous emissions. <i>Environmental Progress and Sustainable Energy</i> , 2009 , 28, 397-403	2.5	27
31	Challenges and Opportunities in Fast Pyrolysis of Biomass: Part II. <i>Johnson Matthey Technology Review</i> , 2018 , 62, 150-160	2.5	24
30	CFD and experimental studies on a circulating fluidised bed reactor for biomass gasification. <i>Chemical Engineering and Processing: Process Intensification</i> , 2018 , 130, 284-295	3.7	22
29	Upgrading Fast Pyrolysis Liquids 2011 , 157-199		17
28	Biomass fast pyrolysis energy balance of a 1kg/h test rig 2015 , 18, 267		17
27	Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. <i>Catalysis Today</i> , 2020 , 355, 882-892	5.3	17
26	Steam gasification of Miscanthus derived char: the reaction kinetics and reactivity with correlation to the material composition and microstructure. <i>Energy Conversion and Management</i> , 2020 , 219, 11302	6 ^{10.6}	16
25	Viscosity of Aged Bio-oils from Fast Pyrolysis of Beech Wood and Miscanthus: Shear Rate and Temperature Dependence. <i>Energy & Fuels</i> , 2016 , 30, 4999-5004	4.1	16
24	Theoretical Analysis of Double Logistic Distributed Activation Energy Model for Thermal Decomposition Kinetics of Solid Fuels. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 7817-	7825	15
23	Influence of Moisture Contents on the Fast Pyrolysis of Trommel Fines in a Bubbling Fluidized Bed Reactor. <i>Waste and Biomass Valorization</i> , 2020 , 11, 3711-3722	3.2	13

(2020-2014)

22	European biorefineries: Implications for land, trade and employment. <i>Environmental Science and Policy</i> , 2014 , 37, 255-265	6.2	12	
21	THE PRODUCTION OF BIOFUELS BY THE THERMOCHEMICAL PROCESSING OF BIOMASS. <i>Series on Photoconversion of Solar Energy</i> , 2004 , 521-611		11	
20	Economics of liquid fuels production by coal gasification. <i>Fuel</i> , 1991 , 70, 1193-1207	7.1	11	
19	In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 20678-20689	6.7	11	
18	Drying Kinetic Analysis of Municipal Solid Waste Using Modified Page Model and Pattern Search Method. <i>Waste and Biomass Valorization</i> , 2017 , 8, 301-312	3.2	10	
17	Comparative Study on Catalytic and Non-Catalytic Pyrolysis of Olive Mill Solid Wastes. <i>Waste and Biomass Valorization</i> , 2018 , 9, 301-313	3.2	10	
16	Physical pretreatment of biogenic-rich trommel fines for fast pyrolysis. <i>Waste Management</i> , 2017 , 70, 81-90	8.6	9	
15	The role of catalyst acidity and shape selectivity on products from the catalytic fast pyrolysis of beech wood. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 162, 104710	6	8	
14	Reaction chemistry and kinetics of corn stalk pyrolysis without and with Ga/HZSM-5. <i>Journal of Thermal Analysis and Calorimetry</i> , 2019 , 137, 491-500	4.1	8	
13	Poplar wood torrefaction: Kinetics, thermochemistry and implications. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 143, 110962	16.2	5	
12	Slice-Selective NMR: A Noninvasive Method for the Analysis of Separated Pyrolysis Fuel Samples. <i>Energy & Energy & Energ</i>	4.1	4	
11	Energy recovery by fast pyrolysis of pre-treated trommel fines derived from a UK-based MSW material recycling facility. <i>Journal of the Energy Institute</i> , 2020 , 93, 2006-2016	5.7	4	
10	A comparative techno-economic assessment of three bio-oil upgrading routes for aviation biofuel production. <i>International Journal of Energy Research</i> , 2019 , 43, 7206	4.5	4	
9	Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40 catalyst: an investigation of the surface reaction mechanism and rate limiting step. <i>Reaction Chemistry and Engineering</i> , 2020 , 5, 1682-1693	4.9	4	
8	Mini-Review on Hot Gas Filtration in Biomass Gasification: Focusing on Ceramic Filter Candles. <i>Energy & Energy & Energy</i>	4.1	4	
7	Local Sensitivity Analysis of Kinetic Models for Cellulose Pyrolysis. <i>Waste and Biomass Valorization</i> , 2019 , 10, 975-984	3.2	4	
6	Hydrogen donation of bio-acids over transition metal facets: A density functional theory study. <i>Applied Catalysis A: General</i> , 2019 , 586, 117218	5.1	3	
5	Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms. <i>Energy & Energy & En</i>	4.1	2	

4	Pyrolysis of Solid Biomass: Basics, Processes and Products 2019 , 1221-1250		1
3	A predictive PBM-DEAM model for lignocellulosic biomass pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 157, 105231	6	1
2	CO2 adsorption on Miscanthus Igiganteus (MG) chars prepared in different atmospheres. <i>Journal of CO2 Utilization</i> , 2021 , 52, 101670	7.6	1
1	The mechanism of hydrogen donation by bio-acids over metal supported on nitrogen-doped carbon nanotubes. <i>Molecular Catalysis</i> , 2021 , 499, 111289	3.3	