Marie Vahter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11308726/publications.pdf

Version: 2024-02-01

4370 22,217 277 86 citations h-index papers

135 g-index 278 278 278 13830 docs citations times ranked citing authors all docs

11581

#	Article	IF	CITATIONS
1	Mechanisms of arsenic biotransformation. Toxicology, 2002, 181-182, 211-217.	2.0	622
2	Gender differences in the disposition and toxicity of metals. Environmental Research, 2007, 104, 85-95.	3.7	571
3	Tubular and Glomerular Kidney Effects in Swedish Women with Low Environmental Cadmium Exposure. Environmental Health Perspectives, 2005, 113, 1627-1631.	2.8	372
4	Exposure to Inorganic Arsenic Metabolites during Early Human Development. Toxicological Sciences, 1998, 44, 185-190.	1.4	362
5	Methylation of Inorganic Arsenic in Different Mammalian Species and Population Groups. Science Progress, 1999, 82, 69-88.	1.0	316
6	Effects of Arsenic on Maternal and Fetal Health. Annual Review of Nutrition, 2009, 29, 381-399.	4.3	286
7	Cadmium-Induced Effects on Bone in a Population-Based Study of Women. Environmental Health Perspectives, 2006, 114, 830-834.	2.8	281
8	Toxic and essential elements in placentas of swedish women. Clinical Biochemistry, 2000, 33, 131-138.	0.8	248
9	Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Environmental Health, 2005, 4, 20.	1.7	238
10	Health Effects of Early Life Exposure to Arsenic. Basic and Clinical Pharmacology and Toxicology, 2008, 102, 204-211.	1.2	235
11	Role of Metabolism in Arsenic Toxicity. Basic and Clinical Pharmacology and Toxicology, 2001, 89, 1-5.	0.0	228
12	Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicology Letters, 2000, 112-113, 209-217.	0.4	226
13	Arsenic Exposure During Pregnancy and Size at Birth: A Prospective Cohort Study in Bangladesh. American Journal of Epidemiology, 2008, 169, 304-312.	1.6	225
14	Species differences in the metabolism of arsenic compounds. Applied Organometallic Chemistry, 1994, 8, 175-182.	1.7	218
15	Arsenic-Associated Oxidative Stress, Inflammation, and Immune Disruption in Human Placenta and Cord Blood. Environmental Health Perspectives, 2011, 119, 258-264.	2.8	213
16	Metabolism of arsenobetaine in mice, rats and rabbits. Science of the Total Environment, 1983, 30, 197-211.	3.9	208
17	Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environmental Research, 1981, 25, 286-293.	3.7	207
18	Association of Arsenic Exposure during Pregnancy with Fetal Loss and Infant Death: A Cohort Study in Bangladesh. American Journal of Epidemiology, 2007, 165, 1389-1396.	1.6	204

#	Article	IF	CITATIONS
19	Cadmium Exposure in Pregnancy and Lactation in Relation to Iron Status. American Journal of Public Health, 2002, 92, 284-287.	1.5	203
20	Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environmental Research, 2008, 106, 110-120.	3.7	200
21	Exposure to inorganic arsenic metabolites during early human development. Toxicological Sciences, 1998, 44, 185-90.	1.4	198
22	Longitudinal Study of Methylmercury and Inorganic Mercury in Blood and Urine of Pregnant and Lactating Women, as Well as in Umbilical Cord Blood. Environmental Research, 2000, 84, 186-194.	3.7	197
23	Urinary arsenic concentration adjustment factors and malnutrition. Environmental Research, 2008, 106, 212-218.	3.7	197
24	Maternal Cadmium Exposure during Pregnancy and Size at Birth: A Prospective Cohort Study. Environmental Health Perspectives, 2012, 120, 284-289.	2.8	191
25	Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicology Letters, 2009, 185, 197-202.	0.4	190
26	Metabolism of Low-Dose Inorganic Arsenic in a Central European Population: Influence of Sex and Genetic Polymorphisms. Environmental Health Perspectives, 2007, 115, 1081-1086.	2.8	188
27	A unique metabolism of inorganic arsenic in native Andean women. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1995, 293, 455-462.	0.8	187
28	Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits. Chemico-Biological Interactions, 1983, 47, 29-44.	1.7	185
29	Assessment of exposure to lead and cadmium through biological monitoring: Results of a UNEP/WHO global study. Environmental Research, 1983, 30, 95-128.	3.7	184
30	Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicology Letters, 1987, 37, 41-46.	0.4	180
31	Population Toxicokinetic Modeling of Cadmium for Health Risk Assessment. Environmental Health Perspectives, 2009, 117, 1293-1301.	2.8	180
32	Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicology Letters, 2010, 192, 162-168.	0.4	180
33	Arsenic Exposure in Pregnancy Increases the Risk of Lower Respiratory Tract Infection and Diarrhea during Infancy in Bangladesh. Environmental Health Perspectives, 2011, 119, 719-724.	2.8	178
34	Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics, 2013, 8, 494-503.	1.3	178
35	Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicology and Applied Pharmacology, 2011, 253, 81-93.	1.3	172
36	Formal recycling of e-waste leads to increased exposure to toxic metals: An occupational exposure study from Sweden. Environment International, 2014, 73, 243-251.	4.8	172

#	Article	IF	Citations
37	Metabolism of 74As-labeled trivalent and pentavalent inorganic arsenic in mice. Environmental Research, 1980, 21, 446-457.	3.7	171
38	Time to Re-evaluate the Guideline Value for Manganese in Drinking Water?. Environmental Health Perspectives, 2007, 115, 1533-1538.	2.8	170
39	Genetic Polymorphisms Influencing Arsenic Metabolism: Evidence from Argentina. Environmental Health Perspectives, 2007, 115, 599-605.	2.8	170
40	Arsenic Exposure and Risk of Spontaneous Abortion, Stillbirth, and Infant Mortality. Epidemiology, 2010, 21, 797-804.	1.2	169
41	Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicology and Applied Pharmacology, 2007, 222, 374-380.	1.3	167
42	Early-Life Cadmium Exposure and Child Development in 5-Year-Old Girls and Boys: A Cohort Study in Rural Bangladesh. Environmental Health Perspectives, 2012, 120, 1462-1468.	2.8	167
43	Developmental Exposure to Methylmercury Alters Learning and Induces Depression-like Behavior in Male Mice. Toxicological Sciences, 2007, 97, 428-437.	1.4	166
44	Arsenic in Drinking Water and Adult Mortality. Epidemiology, 2009, 20, 824-830.	1.2	162
45	Prevalence of arsenic exposure and skin lesions. A population based survey in Matlab, Bangladesh. Journal of Epidemiology and Community Health, 2006, 60, 242-248.	2.0	158
46	Polymorphisms in Arsenic(+III Oxidation State) Methyltransferase (<i>AS3MT</i>) Predict Gene Expression of <i>AS3MT</i> as Well as Arsenic Metabolism. Environmental Health Perspectives, 2011, 119, 182-188.	2.8	156
47	Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotoxicity Research, 2007, $11,241-260$.	1.3	152
48	The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicology and Applied Pharmacology, 2008, 230, 9-16.	1.3	151
49	Biotransformation of dimethylarsinic acid in mouse, hamster and man. Journal of Applied Toxicology, 1987, 7, 111-117.	1.4	149
50	Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environmental Health, 2007, 6, 30.	1.7	149
51	Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone, 2012, 50, 1372-1378.	1.4	148
52	Metal–bone interactions. Toxicology Letters, 2000, 112-113, 219-225.	0.4	142
53	In vivo reduction of arsenate in mice and rabbits. Environmental Research, 1983, 32, 14-24.	3.7	139
54	Inorganic mercury and methylmercury in placentas of Swedish women Environmental Health Perspectives, 2002, 110, 523-526.	2.8	138

#	Article	IF	Citations
55	Tissue distribution and retention of 74As-dimethylarsinic acid in mice and rats. Archives of Environmental Contamination and Toxicology, 1984, 13, 259-264.	2.1	137
56	Transport of Methylmercury and Inorganic Mercury to the Fetus and Breast-Fed Infant. Environmental Health Perspectives, 2005, 113, 1381-1385.	2.8	136
57	Environmental Exposure to Metals and Children's Growth to Age 5 Years: A Prospective Cohort Study. American Journal of Epidemiology, 2013, 177, 1356-1367.	1.6	136
58	Methyl mercury exposure in Swedish women with high fish consumption. Science of the Total Environment, 2005, 341, 45-52.	3.9	130
59	High concentrations of essential and toxic elements in infant formula and infant foods – A matter of concern. Food Chemistry, 2011, 127, 943-951.	4.2	128
60	The effect of methyltransferase inhibition on the metabolism of [74As]arsenite in mice and rabbits. Chemico-Biological Interactions, 1984, 50, 49-57.	1.7	127
61	The role of the methylation in the detoxication of arsenate in the rabbit. Chemico-Biological Interactions, 1985, 56, 225-238.	1.7	125
62	Reduction and binding of arsenate in marmoset monkeys. Archives of Toxicology, 1985, 57, 119-124.	1.9	122
63	Long-term cadmium exposure and the association with bone mineral density and fractures in a population-based study among women. Journal of Bone and Mineral Research, 2011, 26, 486-495.	3.1	120
64	Low-level arsenic excretion in breast milk of native Andean women exposed to high levels of arsenic in the drinking water. International Archives of Occupational and Environmental Health, 1998, 71, 42-46.	1.1	119
65	Bioavailability of Cadmium from Shellfish and Mixed Diet in Women. Toxicology and Applied Pharmacology, 1996, 136, 332-341.	1.3	118
66	High-Level Exposure to Lithium, Boron, Cesium, and Arsenic via Drinking Water in the Andes of Northern Argentina. Environmental Science & Environmenta	4.6	117
67	Low-Level Environmental Cadmium Exposure Is Associated with DNA Hypomethylation in Argentinean Women. Environmental Health Perspectives, 2012, 120, 879-884.	2.8	115
68	Metals and trace element concentrations in breast milk of first time healthy mothers: a biological monitoring study. Environmental Health, 2012, 11, 92.	1.7	113
69	Human Adaptation to Arsenic-Rich Environments. Molecular Biology and Evolution, 2015, 32, 1544-1555.	3.5	113
70	Breast-feeding Protects against Arsenic Exposure in Bangladeshi Infants. Environmental Health Perspectives, 2008, 116, 963-969.	2.8	113
71	In Utero Arsenic Exposure Is Associated With Impaired Thymic Function in Newborns Possibly Via Oxidative Stress and Apoptosis. Toxicological Sciences, 2012, 129, 305-314.	1.4	112
72	Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regulatory Toxicology and Pharmacology, 2008, 51, 201-214.	1.3	111

#	Article	lF	Citations
73	Deposition of nickel, chromium, and cobalt on the skin in some occupations – assessment by acid wipe sampling. Contact Dermatitis, 2008, 58, 347-354.	0.8	110
74	Arsenic exposure in Hungary, Romania and Slovakia. Journal of Environmental Monitoring, 2006, 8, 203-208.	2.1	108
75	Tissue distribution and subcellular binding of arsenic in Marmoset monkeys after injection of 74As-Arsenite. Archives of Toxicology, 1982, 51, 65-77.	1.9	103
76	Environmental exposure to arsenic and cadmium during pregnancy and fetal size: A longitudinal study in rural Bangladesh. Reproductive Toxicology, 2012, 34, 504-511.	1.3	102
77	Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regulatory Toxicology and Pharmacology, 2008, 51, 215-229.	1.3	101
78	Chromosomal aberrations in peripheral blood lymphocytes from native Andean women and children from Northwestern Argentina exposed to arsenic in drinking water. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1996, 370, 151-158.	1.2	99
79	Benchmark Dose for Cadmium-Induced Renal Effects in Humans. Environmental Health Perspectives, 2006, 114, 1072-1076.	2.8	99
80	Nutritional Status Has Marginal Influence on the Metabolism of Inorganic Arsenic in Pregnant Bangladeshi Women. Environmental Health Perspectives, 2008, 116, 315-321.	2.8	99
81	Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reproductive Toxicology, 2011, 31, 210-218.	1.3	99
82	Influence of iron and zinc status on cadmium accumulation in Bangladeshi women. Toxicology and Applied Pharmacology, 2007, 222, 221-226.	1.3	97
83	Inorganic Arsenic and Basal Cell Carcinoma in Areas of Hungary, Romania, and Slovakia: A Case–Control Study. Environmental Health Perspectives, 2012, 120, 721-726.	2.8	97
84	Embryotoxicity of Arsenite and Arsenate: Distribution in Pregnant Mice and Monkeys and Effects on Embryonic Cells <i>in Vitro</i> . Acta Pharmacologica Et Toxicologica, 1984, 54, 311-320.	0.0	94
85	Arsenic Exposure and Cell-Mediated Immunity in Pre-School Children in Rural Bangladesh. Toxicological Sciences, 2014, 141, 166-175.	1.4	94
86	Manganese in Drinking Water and Cognitive Abilities and Behavior at 10 Years of Age: A Prospective Cohort Study. Environmental Health Perspectives, 2017, 125, 057003.	2.8	93
87	High arsenic groundwater: mobilization, metabolism and mitigation–an overview in the Bengal Delta Plain. Molecular and Cellular Biochemistry, 2003, 253, 347-355.	1.4	89
88	Pre- and postnatal arsenic exposure and child development at 18 months of age: a cohort study in rural Bangladesh. International Journal of Epidemiology, 2010, 39, 1206-1216.	0.9	88
89	The semiconductor elements arsenic and indium induce apoptosis in rat thymocytes. Toxicology, 1997, 118, 129-136.	2.0	86
90	Intra-individual variation in the metabolism of inorganic arsenic. International Archives of Occupational and Environmental Health, 2002, 75, 576-580.	1.1	86

#	Article	IF	CITATIONS
91	Screening of arsenic in tubewell water with field test kits: Evaluation of the method from public health perspective. Science of the Total Environment, 2007, 379, 167-175.	3.9	86
92	Cadmium exposure and cognitive abilities and behavior at 10†years of age: A prospective cohort study. Environment International, 2018, 113, 259-268.	4.8	86
93	Metabolism of arsenocholine in mice, rats and rabbits. Science of the Total Environment, 1984, 34, 223-240.	3.9	85
94	Arsenic Exposure and Age- and Sex-Specific Risk for Skin Lesions: A Population-Based Case–Referent Study in Bangladesh. Environmental Health Perspectives, 2006, 114, 1847-1852.	2.8	85
95	Implications of gender differences for human health risk assessment and toxicology. Environmental Research, 2007, 104, 70-84.	3.7	85
96	Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 667, 4-14.	0.4	85
97	Gender and age differences in mixed metal exposure and urinary excretion. Environmental Research, 2011, 111, 1271-1279.	3.7	85
98	Evaluation of the three most commonly used analytical methods for determination of inorganic arsenic and its metabolites in urine. Toxicology Letters, 2007, 168, 310-318.	0.4	84
99	A Physiologically Based Pharmacokinetic Model for Arsenic Exposure. Toxicology and Applied Pharmacology, 1996, 140, 471-486.	1.3	83
100	Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS. Contact Dermatitis, 2006, 54, 233-238.	0.8	81
101	Targeted uptake of folic acid-functionalized iron oxide nanoparticles by ovarian cancer cells in the presence but not in the absence of serum. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1421-1431.	1.7	80
102	Airborne arsenic and urinary excretion of metabolites of inorganic arsenic among smelter workers. International Archives of Occupational and Environmental Health, 1986, 57, 79-91.	1.1	79
103	Arsenic Exposure through Drinking Water Is Associated with Longer Telomeres in Peripheral Blood. Chemical Research in Toxicology, 2012, 25, 2333-2339.	1.7	79
104	Lead Exposure and Hearing Effects in Children in Katowice, Poland. Environmental Research, 1999, 80, 1-8.	3.7	77
105	Single nucleotide polymorphisms in DNA repair genes and basal cell carcinoma of skin. Carcinogenesis, 2005, 27, 1676-1681.	1.3	77
106	Effect of Arsenic Exposure during Pregnancy on Infant Development at 7 Months in Rural Matlab, Bangladesh. Environmental Health Perspectives, 2009, 117, 288-293.	2.8	77
107	Interactions between essential and toxic elements in lead exposed children in Katowice, Poland. Clinical Biochemistry, 1998, 31, 657-665.	0.8	75
108	Metabolism of arsenic. , 1983, , 171-198.		75

#	Article	IF	CITATIONS
109	Chronic exposure to cadmium and arsenic strongly influences concentrations of 8-oxo-7,8-dihydro-2′-deoxyguanosine in urine. Free Radical Biology and Medicine, 2010, 48, 1211-1217.	1.3	73
110	Exposure to Environmental Tobacco Smoke in the Household and Urinary Cotinine Excretion, Heavy Metals Retention, and Lung Function. Archives of Environmental Health, 1992, 47, 357-363.	0.4	71
111	A rapid method for the selective analysis of total urinary metabolites of inorganic arsenic Scandinavian Journal of Work, Environment and Health, 1981, 7, 38-44.	1.7	71
112	Variation in Blood Concentrations of Cadmium and Lead in the Elderly. Environmental Research, 1999, 80, 222-230.	3.7	70
113	Impact of Smoking and Chewing Tobacco on Arsenic-Induced Skin Lesions. Environmental Health Perspectives, 2010, 118, 533-538.	2.8	70
114	Alkali dilution of blood samples for high throughput ICP-MS analysisâ€"comparison with acid digestion. Clinical Biochemistry, 2015, 48, 140-147.	0.8	70
115	Elevated childhood exposure to arsenic despite reduced drinking water concentrations — A longitudinal cohort study in rural Bangladesh. Environment International, 2016, 86, 119-125.	4.8	70
116	Solubility, retention, and metabolism of intratracheally and orally administered inorganic arsenic compounds in the hamster. Environmental Research, 1987, 42, 72-82.	3.7	69
117	The Epigenetic Effects of Prenatal Cadmium Exposure. Current Environmental Health Reports, 2015, 2, 195-203.	3.2	69
118	Release of nickel from coins and deposition onto skin from coin handling – comparing euro coins and SEK. Contact Dermatitis, 2008, 59, 31-37.	0.8	68
119	Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype. Metallomics, 2012, 4, 1167.	1.0	67
120	Cadmium interacts with the transport of essential micronutrients in the mammary glandâ€"A study in rural Bangladeshi women. Toxicology, 2009, 257, 64-69.	2.0	66
121	Lithium in Drinking Water and Thyroid Function. Environmental Health Perspectives, 2011, 119, 827-830.	2.8	66
122	Arsenic and Cadmium in Food-chain in Bangladesh - An Exploratory Study. Journal of Health, Population and Nutrition, 2010, 28, 578-84.	0.7	64
123	Pre- and Postnatal Arsenic Exposure and Body Size to 2 Years of Age: A Cohort Study in Rural Bangladesh. Environmental Health Perspectives, 2012, 120, 1208-1214.	2.8	64
124	Efficient Arsenic Metabolism $\hat{a}\in$ " The AS3MT Haplotype Is Associated with DNA Methylation and Expression of Multiple Genes Around AS3MT. PLoS ONE, 2013, 8, e53732.	1.1	64
125	Modifications of Ca 2+ signaling by inorganic mercury in PC 12 cells. FASEB Journal, 1993, 7, 1507-1514.	0.2	63
126	Skin Deposition of Nickel, Cobalt, and Chromium in Production of Gas Turbines and Space Propulsion Components. Annals of Occupational Hygiene, 2010, 54, 340-50.	1,9	63

#	Article	IF	CITATIONS
127	Arsenic Metabolism in Children Differs From That in Adults. Toxicological Sciences, 2016, 152, 29-39.	1.4	63
128	Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children. Environmental Research, 2016, 147, 16-23.	3.7	63
129	Burden of cadmium in early childhood: Longitudinal assessment of urinary cadmium in rural Bangladesh. Toxicology Letters, 2010, 198, 20-25.	0.4	62
130	Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. International Journal of Epidemiology, 2013, 42, 176-185.	0.9	62
131	Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages. PLoS ONE, 2015, 10, e0129008.	1.1	61
132	Concentrations of arsenic in urine of the general population in Sweden. Science of the Total Environment, 1986, 54, 1-12.	3.9	60
133	Lead in Plasma and Whole Blood from Lead-Exposed Children. Environmental Research, 1999, 80, 25-33.	3.7	60
134	Arsenic exposure alters lung function and airway inflammation in children: A cohort study in rural Bangladesh. Environment International, 2017, 101, 108-116.	4.8	59
135	Nutritional status and diet as predictors of children's lead concentrations in blood and urine. Environment International, 2018, 111, 43-51.	4.8	59
136	Both the Environment and Genes Are Important for Concentrations of Cadmium and Lead in Blood. Environmental Health Perspectives, 2000, 108, 719-722.	2.8	58
137	Occupational Exposure to Ultraviolet Radiation and Risk of Non-Melanoma Skin Cancer in a Multinational European Study. PLoS ONE, 2013, 8, e62359.	1.1	56
138	Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine. European Journal of Epidemiology, 2016, 31, 1123-1134.	2.5	55
139	Prenatal and childhood arsenic exposure through drinking water and food and cognitive abilities at 10Âyears of age: A prospective cohort study. Environment International, 2020, 139, 105723.	4.8	55
140	Environmental exposure to lithium during pregnancy and fetal size: A longitudinal study in the Argentinean Andes. Environment International, 2015, 77, 48-54.	4.8	54
141	Methods for integrated exposure monitoring of lead and cadmium. Environmental Research, 1991, 56, 78-89.	3.7	53
142	Exploring telomere length in mother–newborn pairs in relation to exposure to multiple toxic metals and potential modifying effects by nutritional factors. BMC Medicine, 2019, 17, 77.	2.3	53
143	A method to compensate for incomplete 24-hour urine collections in nutritional epidemiology studies. Public Health Nutrition, 1999, 2, 587-591.	1.1	52
144	Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium. Environmental Research, 2015, 140, 205-213.	3.7	52

#	Article	IF	Citations
145	Personal monitoring of lead and cadmium exposure-a Swedish study with special reference to methodological aspects Scandinavian Journal of Work, Environment and Health, 1991, 17, 65-74.	1.7	52
146	Arsenic induces telomerase expression and maintains telomere length in human cord blood cells. Toxicology, 2009, 260, 132-141.	2.0	50
147	Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores. Environmental Health, 2011, 10, 105.	1.7	50
148	Toxicity of inorganic arsenic and its metabolites on haematopoietic progenitors "in vitro― Comparison between species and sexes. Toxicology, 2008, 249, 102-108.	2.0	49
149	Early life low-level cadmium exposure is positively associated with increased oxidative stress. Environmental Research, 2012, 112, 164-170.	3.7	48
150	Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. Journal of Trace Elements in Medicine and Biology, 2015, 29, 249-254.	1.5	48
151	Arsenic-Associated Oxidative Stress, Inflammation, and Immune Disruption in Human Placenta and Cord Blood. Environmental Health Perspectives, 2010, 119, 258-264.	2.8	48
152	Occurrence and levels of organochlorine compounds in human breast milk in Bangladesh. Chemosphere, 2012, 88, 784-790.	4.2	46
153	Selenium concentrations in brain after exposure to methylmercury: relations between the inorganic mercury fraction and selenium. Archives of Toxicology, 1995, 69, 228-234.	1.9	44
154	Toxic metals and the menopause. The Journal of the British Menopause Society, 2004, 10, 60-65.	1.3	44
155	Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational European study. International Journal of Cancer, 2013, 133, 2182-2191.	2.3	44
156	Possible Positive Selection for an Arsenic-Protective Haplotype in Humans. Environmental Health Perspectives, 2013, 121, 53-58.	2.8	44
157	Major Limitations in Using Element Concentrations in Hair as Biomarkers of Exposure to Toxic and Essential Trace Elements in Children. Environmental Health Perspectives, 2017, 125, 067021.	2.8	44
158	Genetic variation in arsenic (+3 oxidation state) methyltransferase (<i>AS3MT</i>), arsenic metabolism and risk of basal cell carcinoma in a <scp>E</scp> uropean population. Environmental and Molecular Mutagenesis, 2015, 56, 60-69.	0.9	43
159	Humoral Immunity in Arsenic-Exposed Children in Rural Bangladesh: Total Immunoglobulins and Vaccine-Specific Antibodies. Environmental Health Perspectives, 2017, 125, 067006.	2.8	43
160	Spatial patterns of fetal loss and infant death in an arsenic-affected area in Bangladesh. International Journal of Health Geographics, 2010, 9, 53.	1.2	42
161	Exposure to Inorganic Arsenic Is Associated with Increased Mitochondrial DNA Copy Number and Longer Telomere Length in Peripheral Blood. Frontiers in Cell and Developmental Biology, 2016, 4, 87.	1.8	42
162	Demethylation and placental transfer of methyl mercury in the pregnant hamster. Toxicology, 1994, 94, 131-142.	2.0	41

#	Article	IF	CITATIONS
163	Impaired arsenic metabolism in children during weaning. Toxicology and Applied Pharmacology, 2009, 239, 208-214.	1.3	41
164	Temporal and seasonal variability of arsenic in drinking water wells in Matlab, southeastern Bangladesh: A preliminary evaluation on the basis of a 4 year study. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1177-1184.	0.9	41
165	Nickel deposited on the skin-visualization by DMG test. Contact Dermatitis, 2011, 64, 151-157.	0.8	40
166	N-6-Adenine-Specific DNA Methyltransferase 1 (<i>N6AMT1</i>) Polymorphisms and Arsenic Methylation in Andean Women. Environmental Health Perspectives, 2013, 121, 797-803.	2.8	40
167	Selenium metabolism to the trimethylselenonium ion (TMSe) varies markedly because of polymorphisms in the indolethylamine N-methyltransferase gene. American Journal of Clinical Nutrition, 2015, 102, 1406-1415.	2.2	40
168	Early-Life Selenium Status and Cognitive Function at 5 and 10 Years of Age in Bangladeshi Children. Environmental Health Perspectives, 2017, 125, 117003.	2.8	40
169	Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D. Environmental Research, 2009, 109, 188-192.	3.7	38
170	Arsenic alters global histone modifications in lymphocytes in vitro and in vivo. Cell Biology and Toxicology, 2016, 32, 275-284.	2.4	38
171	Spatial and temporal variations in arsenic exposure via drinking-water in northern Argentina. Journal of Health, Population and Nutrition, 2006, 24, 317-26.	0.7	38
172	Benchmark dose for cadmium-induced osteoporosis in women. Toxicology Letters, 2010, 197, 123-127.	0.4	37
173	Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood. Toxicology and Applied Pharmacology, 2017, 321, 57-66.	1.3	37
174	Validation with biological markers for food intake of a dietary assessment method used by Swedish women with three different with dietary preferences. Public Health Nutrition, 1998, 1, 199-206.	1.1	36
175	Cadmium concentrations in human blood and urine are associated with polymorphisms in zinc transporter genes. Metallomics, 2014, 6, 885-891.	1.0	36
176	Prenatal lead exposure and childhood blood pressure and kidney function. Environmental Research, 2016, 151, 628-634.	3.7	36
177	Common Polymorphisms in the Solute Carrier SLC30A10 are Associated With Blood Manganese and Neurological Function. Toxicological Sciences, 2016, 149, 473-483.	1.4	36
178	ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO INORGANIC ARSENIC. Acta Pharmacologica Et Toxicologica, 1986, 59, 31-34.	0.0	35
179	Persistent Exposure to Arsenic via Drinking Water in Rural Bangladesh Despite Major Mitigation Efforts. American Journal of Public Health, 2011, 101, S333-S338.	1.5	35
180	Maternal Urinary Iodine Concentration up to 1.0 mg/L Is Positively Associated with Birth Weight, Length, and Head Circumference of Male Offspring. Journal of Nutrition, 2014, 144, 1438-1444.	1.3	35

#	Article	IF	Citations
181	Early-Life Cadmium Exposure and Bone-Related Biomarkers: A Longitudinal Study in Children. Environmental Health Perspectives, 2019, 127, 37003.	2.8	35
182	Modifications of Cell Signalling in the Cytotoxicity of Metals. Basic and Clinical Pharmacology and Toxicology, 1991, 68, 424-429.	0.0	34
183	Impact of Soil and Dust Lead on Children's Blood Lead in Contaminated Areas of Sweden. Archives of Environmental Health, 2000, 55, 93-97.	0.4	34
184	The effects of methylmercury on motor activity are sex- and age-dependent, and modulated by genetic deletion of adenosine receptors and caffeine administration. Toxicology, 2007, 241, 119-133.	2.0	34
185	Low-level maternal exposure to cadmium, lead, and mercury and birth outcomes in a Swedish prospective birth-cohort. Environmental Pollution, 2020, 265, 114986.	3.7	34
186	Boron exposure through drinking water during pregnancy and birth size. Environment International, 2016, 95, 54-60.	4.8	33
187	Prenatal arsenic exposure is associated with increased plasma IGFBP3 concentrations in 9-year-old children partly via changes in DNA methylation. Archives of Toxicology, 2018, 92, 2487-2500.	1.9	33
188	Soluble transferrin receptor: longitudinal assessment from pregnancy to postlactation. Obstetrics and Gynecology, 2002, 99, 260-266.	1.2	32
189	Role of Metabolism in Arsenic Toxicity. Basic and Clinical Pharmacology and Toxicology, 2001, 89, 1-5.	0.0	32
190	Associations between cadmium exposure and circulating levels of sex hormones in postmenopausal women. Environmental Research, 2014, 134, 265-269.	3.7	32
191	Elevated arsenic exposure and efficient arsenic metabolism in indigenous women around Lake Poop \tilde{A}^3 , Bolivia. Science of the Total Environment, 2019, 657, 179-186.	3.9	32
192	The effects of arsenic exposure on blood pressure and early risk markers of cardiovascular disease: Evidence for population differences. Environmental Research, 2015, 140, 32-36.	3.7	31
193	Lifetime exposure to arsenic in residential drinking water in Central Europe. International Archives of Occupational and Environmental Health, 2010, 83, 471-481.	1.1	30
194	Early-life exposure to lithium and boron from drinking water. Reproductive Toxicology, 2012, 34, 552-560.	1.3	30
195	Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study. Environmental Research, 2016, 147, 1-7.	3.7	29
196	AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes. PLoS ONE, 2017, 12, e0175422.	1.1	29
197	Multiple-metal exposure, diet, and oxidative stress in Uruguayan school children. Environmental Research, 2018, 166, 507-515.	3.7	29
198	A modified routine analysis of arsenic content in drinking-water in Bangladesh by hydride generation-atomic absorption spectrophotometry. Journal of Health, Population and Nutrition, 2006, 24, 36-41.	0.7	29

#	Article	IF	Citations
199	Recent applications of benchmark dose method for estimation of reference cadmium exposure for renal effects in man. Toxicology Letters, 2010, 198, 40-43.	0.4	28
200	Pregnancy and the methyltransferase genotype independently influence the arsenic methylation phenotype. Pharmacogenetics and Genomics, 2012, 22, 508-516.	0.7	28
201	Prenatal lead exposure is associated with decreased cord blood DNA methylation of the glycoprotein VI gene involved in platelet activation and thrombus formation. Environmental Epigenetics, 2015, 1, dvv007.	0.9	28
202	GSH release in bile as influenced by arsenite. FEBS Letters, 1982, 145, 285-288.	1.3	27
203	Arsenic Exposure Affects Plasma Insulin-Like Growth Factor 1 (IGF-1) in Children in Rural Bangladesh. PLoS ONE, 2013, 8, e81530.	1.1	27
204	Low 8-oxo-7,8-dihydro-2′-deoxyguanosine levels and influence of genetic background in an Andean population exposed to high levels of arsenic. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 683, 98-105.	0.4	26
205	Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Archives of Toxicology, 2017, 91, 2067-2078.	1.9	26
206	Variation in Human Metabolism of Arsenic. , 1999, , 267-279.		25
207	Slow recovery from severe inorganic arsenic poisoning despite treatment with DMSA (2.3-dimercaptosuccinic acid). Clinical Toxicology, 2007, 45, 424-428.	0.8	25
208	Manganese exposure through drinking water during pregnancy and size at birth: A prospective cohort study. Reproductive Toxicology, 2015, 53, 68-74.	1.3	25
209	A cross-sectional study of general cognitive abilities among Uruguayan school children with low-level arsenic exposure, potential effect modification by methylation capacity and dietary folate. Environmental Research, 2018, 164, 124-131.	3.7	25
210	Inorganic mercury modifies Ca2+ signals, triggers apoptosis and potentiates NMDA toxicity in cerebellar granule neurons. Cell Death and Differentiation, 1997, 4, 317-324.	5.0	24
211	Exposure to Lithium and Cesium Through Drinking Water and Thyroid Function During Pregnancy: A Prospective Cohort Study. Thyroid, 2015, 25, 1199-1208.	2.4	24
212	ICP-MS measurement of toxic and essential elements in human breast milk. A comparison of alkali dilution and acid digestion sample preparation methods. Clinical Biochemistry, 2018, 53, 81-87.	0.8	24
213	Nutritional impact on Immunological maturation during Childhood in relation to the Environment (NICE): a prospective birth cohort in northern Sweden. BMJ Open, 2018, 8, e022013.	0.8	24
214	Associations of Arsenic Exposure With Telomere Length and NaÃ⁻ve T Cells in Childhood—A Birth Cohort Study. Toxicological Sciences, 2018, 164, 539-549.	1.4	24
215	Methylmercury exposure and cognitive abilities and behavior at 10 years of age. Environment International, 2017, 102, 97-105.	4.8	23
216	Factors influencing arsenic methylation in humans. Journal of Trace Elements in Experimental Medicine, 2000, 13, 173-184.	0.8	22

#	Article	IF	Citations
217	TrkB overexpression in mice buffers against memory deficits and depression-like behavior but not all anxiety- and stress-related symptoms induced by developmental exposure to methylmercury. Frontiers in Behavioral Neuroscience, 2014, 8, 315.	1.0	22
218	A longitudinal study of rural Bangladeshi children with long-term arsenic and cadmium exposures and biomarkers of cardiometabolic diseases. Environmental Pollution, 2021, 271, 116333.	3.7	22
219	Intracellular distribution and chemical forms of arsenic in rabbits exposed to arsenate. Biological Trace Element Research, 1989, 21, 233-239.	1.9	21
220	Transplacental and Lactational Exposure to Mercury in Hamster Pups after Maternal Administration of Methyl Mercury in Late Gestation. Basic and Clinical Pharmacology and Toxicology, 1995, 77, 130-135.	0.0	21
221	Polymorphisms in Iron Homeostasis Genes and Urinary Cadmium Concentrations among Nonsmoking Women in Argentina and Bangladesh. Environmental Health Perspectives, 2013, 121, 467-472.	2.8	21
222	Elevated Manganese Concentrations in Drinking Water May Be Beneficial for Fetal Survival. PLoS ONE, 2013, 8, e74119.	1.1	21
223	Combined in utero and juvenile exposure of mice to arsenate and atrazine in drinking water modulates gene expression and clonogenicity of myeloid progenitors. Toxicology Letters, 2008, 180, 59-66.	0.4	20
224	Arsenite methyltransferase (AS3MT) polymorphisms and arsenic methylation in children in rural Bangladesh. Toxicology and Applied Pharmacology, 2018, 357, 80-87.	1.3	20
225	Executive functions in school children from Montevideo, Uruguay and their associations with concurrent low-level arsenic exposure. Environment International, 2020, 142, 105883.	4.8	20
226	Thromboxane metabolite excretion during pregnancy – influence of preeclampsia and aspirin treatment. Thrombosis Research, 2011, 127, 605-606.	0.8	19
227	Distribution of Mercury in Rabbits Subchronically Exposed to Low Levels of Radiolabeled Methyl Mercury. Basic and Clinical Pharmacology and Toxicology, 1991, 68, 464-468.	0.0	18
228	Anthroposophic lifestyle influences the concentration of metals in placenta and cord blood. Environmental Research, 2015, 136, 88-96.	3.7	17
229	Pre- and postnatal environmental boron exposure and infant growth: Results from a mother-child cohort in northern Argentina. Environmental Research, 2019, 171, 60-68.	3.7	17
230	Thyroid hormones in relation to toxic metal exposure in pregnancy, and potential interactions with iodine and selenium. Environment International, 2021, 157, 106869.	4.8	15
231	Infant lodine and Selenium Status in Relation to Maternal Status and Diet During Pregnancy and Lactation. Frontiers in Nutrition, 2021, 8, 733602.	1.6	15
232	Extensive lead exposure in children living in an area with production of lead-glazed tiles in the Ecuadorian Andes. International Archives of Occupational and Environmental Health, 1997, 70, 282-286.	1.1	14
233	Maternal–Child Transfer of Essential and Toxic Elements through Breast Milk in a Mine-Waste Polluted Area. American Journal of Perinatology, 2014, 31, 993-1002.	0.6	13
234	Lead exposure and indices of height and weight in Uruguayan urban school children, considering co-exposure to cadmium and arsenic, sex, iron status and dairy intake. Environmental Research, 2021, 195, 110799.	3.7	13

#	Article	IF	CITATIONS
235	Lactational exposure to methylmercury in the hamster. Archives of Toxicology, 1995, 69, 235-241.	1.9	12
236	Spatial modelling of individual arsenic exposure via well water: evaluation of arsenic in urine, main water source and influence of neighbourhood water sources in rural Bangladesh. Journal of Environmental Monitoring, 2010, 12, 1341.	2.1	12
237	The association between active/passive smoking and toxic metals among pregnant women in Greece. Xenobiotica, 2011, 41, 456-463.	0.5	12
238	Placental and Cord Blood Telomere Length in Relation to Maternal Nutritional Status. Journal of Nutrition, 2020, 150, 2646-2655.	1.3	12
239	Polymorphisms in DNA repair genes XRCC1 and XRCC3, occupational exposure to arsenic and sunlight, and the risk of non-melanoma skin cancer in a European case-control study. Environmental Research, 2014, 134, 382-389.	3.7	11
240	Environmental metal exposure and growth to 10Âyears of age in a longitudinal mother–child cohort in rural Bangladesh. Environment International, 2021, 156, 106738.	4.8	11
241	Long-term cadmium exposure and fractures, cardiovascular disease, and mortality in a prospective cohort of women. Environment International, 2022, 161, 107114.	4.8	11
242	Metabolism of methylmercury in rabbits and hamsters. Biological Trace Element Research, 1989, 21, 219-226.	1.9	10
243	Concentrations of biomarkers in spot urine samples need adjustment for variation in dilutionâ€"Comment on: "Distribution of urinary selenium and arsenic among pregnant women exposed to arsenic in drinking water―[Environ Res. 2006;100(1):115â€"122]. Environmental Research, 2007, 104, 312-313.	3.7	10
244	Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved. Environmental Health Perspectives, 2018, 126, 027001.	2.8	10
245	A cross-sectional study of urinary cadmium concentrations in relation to dietary intakes in Uruguayan school children. Science of the Total Environment, 2019, 658, 1239-1248.	3.9	10
246	Chapter 14 Arsenic. Techniques and Instrumentation in Analytical Chemistry, 1994, , 291-320.	0.0	9
247	Predictors of selenium biomarker kinetics in 4–9-year-old Bangladeshi children. Environment International, 2018, 121, 842-851.	4.8	9
248	Biomarker of chronic cadmium exposure in a population residing in the vicinity of a zinc producing plant. Science of the Total Environment, 2011, 409, 4222-4228.	3.9	8
249	Low level arsenic exposure, B-vitamins, and achievement among Uruguayan school children. International Journal of Hygiene and Environmental Health, 2020, 223, 124-131.	2.1	8
250	Crossâ€Fostering Study of Methyl Mercury Retention, Demethylation and Excretion in the Neonatal Hamster. Basic and Clinical Pharmacology and Toxicology, 1998, 82, 132-136.	0.0	7
251	Vitamin B-6 Intake Is Modestly Associated with Arsenic Methylation in Uruguayan Children with Low-Level Arsenic Exposure. Journal of Nutrition, 2020, 150, 1223-1229.	1.3	7
252	Sustainable safe water options in Bangladesh. , 2005, , 319-330.		7

#	Article	IF	Citations
253	Maternal exposure to cadmium during pregnancy is associated with changes in DNA methylation that are persistent at 9Âyears of age. Environment International, 2022, 163, 107188.	4.8	7
254	Human adaptation to arsenic in Bolivians living in the Andes. Chemosphere, 2022, 301, 134764.	4.2	7
255	Detecting arsenic-related skin lesions: Experiences from a large community-based survey in Bangladesh. International Journal of Environmental Health Research, 2007, 17, 141-149.	1.3	6
256	Associations of dietary intakes and serum levels of folate and vitamin B-12 with methylation of inorganic arsenic in Uruguayan children: Comparison of findings and implications for future research. Environmental Research, 2020, 189, 109935.	3.7	6
257	Arsenic exposure from drinking water and mortality in Bangladesh. Lancet, The, 2010, 376, 1641.	6.3	5
258	Retinol May Counteract the Negative Effect of Cadmium on Bone. Journal of Nutrition, 2011, 141, 2198-2203.	1.3	5
259	Contribution of household drinking water intake to arsenic and lead exposure among Uruguayan schoolchildren. Chemosphere, 2022, 292, 133525.	4.2	5
260	Gestational and childhood urinary iodine concentrations and children's cognitive function in a longitudinal mother-child cohort in rural Bangladesh. International Journal of Epidemiology, 2023, 52, 144-155.	0.9	5
261	Determination of Human Exposure to Lead and Cadmium: A WHO/UNEP Pilot Study. Chemical Speciation and Bioavailability, 1991, 3, 69-72.	2.0	4
262	Metabolism of Mercury in Hamster Pups Administered a Single Dose of ²⁰³ Hg‣abeled Methyl Mercury. Basic and Clinical Pharmacology and Toxicology, 1995, 76, 80-84.	0.0	4
263	Soluble Transferrin Receptor. Obstetrics and Gynecology, 2002, 99, 260-266.	1.2	4
264	Assessment of Joint Impact of Iodine, Selenium, and Zinc Status on Women's Third-Trimester Plasma Thyroid Hormone Concentrations. Journal of Nutrition, 2022, 152, 1737-1746.	1.3	4
265	LEAD IN PETROL. Lancet, The, 1983, 322, 220.	6.3	3
266	MS-HRM assay identifies high levels of epigenetic heterogeneity in human immortalized cell lines. Gene, 2015, 560, 165-172.	1.0	3
267	Determinants of Blood Cadmium, Lead, Arsenic, Uranium, Mercury and Molybdenum Levels among Pregnant Women in Crete, Greece. Epidemiology, 2009, 20, S174.	1.2	3
268	Effect of Methyl Mercury Exposure on the Uptake of Radiolabeled Inorganic Mercury in the Brain of Rabbits. Basic and Clinical Pharmacology and Toxicology, 1994, 74, 158-161.	0.0	1
269	Exposure to arsenic and intra-chromosomal instability in blood. Metallomics, 2014, 6, 1387-1389.	1.0	1
270	Discordant pattern of <i>BRCA1 </i> /i>gene epimutation in blood between mothers and daughters. Journal of Clinical Pathology, 2015, 68, 575-577.	1.0	1

#	Article	IF	CITATIONS
271	Dissolution of Two Arsenic Compounds by Rabbit Alveolar Macrophages in Vitro. Toxicological Sciences, 1987, 8, 382-388.	1.4	O
272	Human developmental neurotoxicity of methylmercury and variables. Regulatory Toxicology and Pharmacology, 2008, 52, 197-198.	1.3	0
273	Diet quality (adequacy, variety, moderation) in relation to biomarkers of metal exposure in school-age children. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
274	Methylmercury, Amalgams, and Children's Health: Björnberg et al. Respond. Environmental Health Perspectives, 2006, 114, .	2.8	0
275	Pre―and postnatal arsenic exposure and growth of infants and young children: a cohort study in rural Bangladesh. FASEB Journal, 2010, 24, 227.4.	0.2	0
276	EFFECTS OF ARSENIC EXPOSURE ON CHILD IMMUNE RESPONSE AND COGNITIVE DEVELOPMENT. ISEE Conference Abstracts, 2011, 2011, .	0.0	0
277	Child growth and development in relation to long-term arsenic exposure through drinking water and food in rural Bangladesh. ISEE Conference Abstracts, 2016, 2016, .	0.0	0