List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1130724/publications.pdf Version: 2024-02-01



WEIRIN FAN

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Improvement of the catalytic performance of ITQ-13 zeolite in methanol to olefins via Ce modification.<br>Catalysis Today, 2023, 410, 184-192.                                                                                                  | 4.4  | 3         |
| 2  | Facile synthesis of hierarchical macro/microporous ZSM-5 zeolite with high catalytic stability in methanol to olefins. Microporous and Mesoporous Materials, 2022, 329, 111538.                                                                 | 4.4  | 15        |
| 3  | Regulation of zeolite particle morphology. Science, 2022, 375, 29-29.                                                                                                                                                                           | 12.6 | 6         |
| 4  | Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology. Chemical Communications, 2022, 58, 2041-2054.                                                                                | 4.1  | 10        |
| 5  | Synthesis of methylene-bridged α,β-unsaturated ketones: α-C <sub>sp<sup>3</sup></sub> –H methylenation of aromatic ketones using Selectfluor as a mild oxidant. Organic and Biomolecular Chemistry, 2022, 20, 415-419.                          | 2.8  | 3         |
| 6  | Highly effective conversion of CO2 into light olefins abundant in ethene. CheM, 2022, 8, 1376-1394.                                                                                                                                             | 11.7 | 31        |
| 7  | Influence of the ZSM-5 Support Acidity on the Catalytic Performance of Pd/ZSM-5 in Lean Methane Oxidation. Chemical Research in Chinese Universities, 2022, 38, 229-236.                                                                        | 2.6  | 7         |
| 8  | Trimethyloxonium ion – a zeolite confined mobile and efficient methyl carrier at low temperatures: a<br>DFT study coupled with microkinetic analysis. Catalysis Science and Technology, 2022, 12, 3328-3342.                                    | 4.1  | 2         |
| 9  | Effective conversion of CO <sub>2</sub> into light olefins over a bifunctional catalyst consisting of<br>La-modified ZnZrO <sub><i>x</i></sub> oxide and acidic zeolite. Catalysis Science and Technology,<br>2022, 12, 2566-2577.              | 4.1  | 15        |
| 10 | lodine-Mediated Pyridine Ring Expansion for the Construction of Azepines. Organic Letters, 2022, 24, 2075-2080.                                                                                                                                 | 4.6  | 9         |
| 11 | Catalytic Performance of Various Zinc-Based Binary Metal Oxides/H-RUB-13 for Hydrogenation of CO <sub>2</sub> . Industrial & Engineering Chemistry Research, 2022, 61, 10409-10418.                                                             | 3.7  | 6         |
| 12 | Enhancing the catalytic performance of H-ITQ-13 zeolite in the conversion of methanol to olefins through regulating the aluminum distribution in its framework. Applied Catalysis A: General, 2022, 637, 118604.                                | 4.3  | 6         |
| 13 | Solventâ€Free Strategy for Direct Access to Versatile Quaternary Ammonium Salts with Complete Atom<br>Economy. ChemSusChem, 2022, 15, .                                                                                                         | 6.8  | 2         |
| 14 | The migration of Zn species on Zn/ZSM-5 catalyst during the process of ethylene aromatization.<br>Catalysis Science and Technology, 2022, 12, 4201-4210.                                                                                        | 4.1  | 13        |
| 15 | Structure and performance of supported iridium catalyst for the lean methane oxidation at low temperature. Applied Catalysis A: General, 2022, 641, 118699.                                                                                     | 4.3  | 5         |
| 16 | Regulating the distribution of acid sites in ZSM-11 zeolite with different halogen anions to enhance its catalytic performance in the conversion of methanol to olefins. Microporous and Mesoporous Materials, 2022, 341, 112051.               | 4.4  | 7         |
| 17 | Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins. Applied Catalysis B: Environmental, 2021, 280, 119391.                                                                       | 20.2 | 61        |
| 18 | Conversion of syngas into light olefins over bifunctional ZnCeZrO/SAPO-34 catalysts: regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance. Catalysis Science and Technology, 2021, 11, 338-348. | 4.1  | 25        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Regulation of Al distributions and Cu2+ locations in SSZ-13 zeolites for NH3-SCR of NO by different alkali metal cations. Journal of Catalysis, 2021, 393, 190-201.                                                                              | 6.2  | 41        |
| 20 | Self-assembly of silicoaluminophosphate nanocrystals in biphasic media with a water-insoluble structure-directing agent. Catalysis Science and Technology, 2021, 11, 5135-5146.                                                                  | 4.1  | 8         |
| 21 | A three-component iodine-catalyzed oxidative coupling reaction: a heterodifunctionalization of 3-methylindoles. Organic and Biomolecular Chemistry, 2021, 19, 5794-5799.                                                                         | 2.8  | 2         |
| 22 | Selectfluor facilitated bridging of indoles to bis(indolyl)methanes using methyl <i>tert</i> -butyl<br>ether as a new methylene precursor. Organic and Biomolecular Chemistry, 2021, 19, 4076-4081.                                              | 2.8  | 12        |
| 23 | Aqueous CO <sub>2</sub> fixation: construction of pyridine skeletons in cooperation with ammonium cations. Green Chemistry, 2021, 23, 7950-7955.                                                                                                 | 9.0  | 8         |
| 24 | Preserving the Active Cu–ZnO Interface for Selective Hydrogenation of CO <sub>2</sub> to Dimethyl Ether and Methanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 2661-2672.                                                             | 6.7  | 29        |
| 25 | Preparation of Pd/SiO2 Catalysts by a Simple Dry Ball-Milling Method for Lean Methane Oxidation and Probe of the State of Active Pd Species. Catalysts, 2021, 11, 725.                                                                           | 3.5  | 7         |
| 26 | Selectivity Switching of CO2 Hydrogenation from HCOOH to CO with an In Situ Formed Ru–Li<br>Complex. ACS Catalysis, 2021, 11, 9390-9396.                                                                                                         | 11.2 | 6         |
| 27 | Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion. Chinese Journal of Catalysis, 2021, 42, 1126-1136.                                                                           | 14.0 | 23        |
| 28 | Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Applied Catalysis B: Environmental, 2021, 291, 120065.                                             | 20.2 | 114       |
| 29 | Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion.<br>Nature Communications, 2021, 12, 4661.                                                                                                          | 12.8 | 32        |
| 30 | Hierarchically structured Pt/K-Beta zeolites for the catalytic conversion of n-heptane to aromatics.<br>Microporous and Mesoporous Materials, 2021, 324, 111308.                                                                                 | 4.4  | 16        |
| 31 | Improving methanol selectivity in CO2 hydrogenation by tuning the distance of Cu on catalyst. Applied<br>Catalysis B: Environmental, 2021, 298, 120590.                                                                                          | 20.2 | 26        |
| 32 | Probing into the building and evolution of primary hydrocarbon pool species in the process of methanol to olefins over H-ZSM-5 zeolite. Molecular Catalysis, 2021, 516, 111968.                                                                  | 2.0  | 3         |
| 33 | Unraveling the Relationship between Zeolite Structure and MTO Product Distribution by Theoretical Study of the Reaction Mechanism. Journal of Physical Chemistry C, 2021, 125, 26472-26483.                                                      | 3.1  | 9         |
| 34 | Assembly of Silicalite-1 Crystals Like Toy Lego Bricks into One-, Two-, and Three-Dimensional<br>Architectures for Enhancing Its Adsorptive Separation and Catalytic Performances. ACS Applied<br>Materials & Interfaces, 2021, 13, 58085-58095. | 8.0  | 5         |
| 35 | Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction. Frontiers of Chemical Science and Engineering, 2020, 14, 847-856.                                                                     | 4.4  | 4         |
| 36 | Direct Conversion of Syngas into Light Olefins with Low CO <sub>2</sub> Emission. ACS Catalysis, 2020, 10, 2046-2059.                                                                                                                            | 11.2 | 77        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Design of 3D Hollow Porous Heterogeneous Nickel–Cobalt Phosphides for Synergistically Enhancing<br>Catalytic Performance for Electrooxidation of Methanol. ACS Applied Materials & Interfaces,<br>2020, 12, 34971-34979. | 8.0  | 42        |
| 38 | Selective Conversion of CO2 into Propene and Butene. CheM, 2020, 6, 3344-3363.                                                                                                                                           | 11.7 | 58        |
| 39 | Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite. Journal of Catalysis, 2020, 391, 459-470.                                                                      | 6.2  | 44        |
| 40 | Promoting effect of alkali metal cations on the catalytic performance of Pd/H-ZSM-5 in the combustion of lean methane. Applied Catalysis A: General, 2020, 602, 117678.                                                  | 4.3  | 24        |
| 41 | Insight into the Methylation of Alkenes and Aromatics with Methanol over Zeolite Catalysts by Linear<br>Scaling Relations. Journal of Physical Chemistry C, 2020, 124, 13789-13798.                                      | 3.1  | 11        |
| 42 | Synthesis of HZSM-5 Rich in Paired Al and Its Catalytic Performance for Propane Aromatization.<br>Catalysts, 2020, 10, 622.                                                                                              | 3.5  | 3         |
| 43 | Developing a general method for encapsulation of metal oxide nanoparticles in mesoporous silica<br>shell by unraveling its formation mechanism. Microporous and Mesoporous Materials, 2020, 305,<br>110381.              | 4.4  | 10        |
| 44 | Kraft lignin derived S and O co-doped porous graphene for metal-free benzylic alcohol oxidation.<br>Catalysis Science and Technology, 2020, 10, 2786-2796.                                                               | 4.1  | 9         |
| 45 | Temperature controlled condensation of nitriles: efficient and convenient synthesis of<br>β-enaminonitriles, 4-aminopyrimidines and 4-amidinopyrimidines in one system. RSC Advances, 2020, 10,<br>6576-6583.            | 3.6  | 12        |
| 46 | Methanol to olefins over H-RUB-13 zeolite: regulation of framework aluminum siting and acid density<br>and their relationship to the catalytic performance. Catalysis Science and Technology, 2020, 10,<br>1835-1847.    | 4.1  | 24        |
| 47 | Selective Formation of Para-Xylene by Methanol Aromatization over Phosphorous Modified ZSM-5<br>Zeolites. Catalysts, 2020, 10, 484.                                                                                      | 3.5  | 17        |
| 48 | Copper(II)-Dioxygen Facilitated Activation of Nitromethane: Nitrogen Donors for the Synthesis of<br>Substituted 2-Hydroxyimino-2-phenylacetonitriles and Phthalimides. Frontiers in Chemistry, 2020, 8,<br>622867.       | 3.6  | 0         |
| 49 | Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone. Journal of Catalysis, 2020, 389, 60-70.                                            | 6.2  | 52        |
| 50 | A highly active Pd/H-ZSM-5 catalyst in lean methane combustion prepared <i>via</i> a sol–gel method<br>and treated by reduction–oxidation. New Journal of Chemistry, 2020, 44, 3940-3949.                                | 2.8  | 20        |
| 51 | Utilization of nitriles as the nitrogen source: practical and economical construction of<br>4-aminopyrimidine and β-enaminonitrile skeletons. Organic Chemistry Frontiers, 2019, 6, 3071-3077.                           | 4.5  | 15        |
| 52 | Copper(ii) facilitated decarboxylation for the construction of pyridyl–pyrazole skeletons. Inorganic<br>Chemistry Frontiers, 2019, 6, 2359-2364.                                                                         | 6.0  | 4         |
| 53 | Aerobic Oxidation of Alcohols over Isolated Single Au Atoms Supported on CeO2 Nanorods: Catalysis<br>of Interfacial [O–Ov–Ce–O–Au] Sites. ACS Applied Nano Materials, 2019, 2, 5214-5223.                                | 5.0  | 36        |
| 54 | Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins. Journal of Catalysis, 2019, 377, 81-97.                                               | 6.2  | 50        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Evolution of Zn Species on Zn/HZSMâ€5 Catalyst under H <sub>2</sub> Pretreated and its Effect on Ethylene Aromatization. ChemCatChem, 2019, 11, 3892-3902.                                                                                   | 3.7  | 34        |
| 56 | The acidic nature of "NMR-invisible―tri-coordinated framework aluminum species in zeolites.<br>Chemical Science, 2019, 10, 10159-10169.                                                                                                      | 7.4  | 78        |
| 57 | Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO <sub>2</sub> catalyst<br>combined with Hβ zeolite. RSC Advances, 2019, 9, 3868-3876.                                                                             | 3.6  | 37        |
| 58 | Strategies to control zeolite particle morphology. Chemical Society Reviews, 2019, 48, 885-907.                                                                                                                                              | 38.1 | 162       |
| 59 | Role of Acetaldehyde in the Roadmap from Initial Carbon–Carbon Bonds to Hydrocarbons during<br>Methanol Conversion. ACS Catalysis, 2019, 9, 6491-6501.                                                                                       | 11.2 | 60        |
| 60 | Novel nickel–cobalt phosphite with face-sharing octahedra derived electrocatalyst for efficient<br>water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2014-2023.                                                                       | 6.0  | 14        |
| 61 | Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework.<br>Current Opinion in Chemical Engineering, 2019, 23, 146-154.                                                                         | 7.8  | 50        |
| 62 | Nanosheet MFI Zeolites for Gas Phase Glycerol Dehydration to Acrolein. Catalysts, 2019, 9, 121.                                                                                                                                              | 3.5  | 31        |
| 63 | Direct synthesis of acetic acid from carbon dioxide and methane over Cu-modulated BEA, MFI, MOR and TON zeolites: a density functional theory study. Catalysis Science and Technology, 2019, 9, 6613-6626.                                   | 4.1  | 26        |
| 64 | Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite. Journal of Catalysis, 2019, 369, 382-395.                                        | 6.2  | 72        |
| 65 | Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals.<br>RSC Advances, 2018, 8, 9152-9160.                                                                                                    | 3.6  | 25        |
| 66 | A facile method for the synthesis of graphene-like 2D metal oxides and their excellent catalytic application in the hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2018, 6, 9948-9961.                                      | 10.3 | 33        |
| 67 | Hierarchical Porous Carbons Derived from Renewable Poplar Anthers for Highâ€Performance<br>Supercapacitors. ChemElectroChem, 2018, 5, 1451-1458.                                                                                             | 3.4  | 24        |
| 68 | Reaction Mechanism for Direct Cyclization of Linear C <sub>5</sub> , C <sub>6</sub> , and<br>C <sub>7</sub> Alkenes over Hâ€ITQâ€I 3 Zeolite Investigated Using Density Functional Theory.<br>ChemPhysChem, 2018, 19, 496-503.               | 2.1  | 18        |
| 69 | A Highly Stable Copperâ€Based Catalyst for Clarifying the Catalytic Roles of Cu <sup>0</sup> and<br>Cu <sup>+</sup> Species in Methanol Dehydrogenation. Angewandte Chemie - International Edition,<br>2018, 57, 1836-1840.                  | 13.8 | 125       |
| 70 | A Highly Stable Copperâ€Based Catalyst for Clarifying the Catalytic Roles of Cu <sup>0</sup> and<br>Cu <sup>+</sup> Species in Methanol Dehydrogenation. Angewandte Chemie, 2018, 130, 1854-1858.                                            | 2.0  | 25        |
| 71 | Electrochemical Water Splitting by Pseudoâ€spinel, Disordered and Layered Lithium Nickel Oxides:<br>Correlation between Structural Motifs and Catalytic Properties. ChemCatChem, 2018, 10, 2551-2557.<br>——————————————————————————————————— | 3.7  | 7         |
| 72 | Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of<br>Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catalysis, 2018, 8,<br>5485-5505.                             | 11.2 | 148       |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Reaction mechanism for the conversion of methanol to olefins over H-ITQ-13 zeolite: a density functional theory study. Catalysis Science and Technology, 2018, 8, 521-533.                                                                                  | 4.1  | 18        |
| 74 | Strategic use of CuAlO <sub>2</sub> as a sustained release catalyst for production of hydrogen from methanol steam reforming. Chemical Communications, 2018, 54, 12242-12245.                                                                               | 4.1  | 27        |
| 75 | Area-Controllable Synthesis of (001), (101), and (011) Planes in ZSM-5 Zeolites. Crystal Growth and Design, 2018, 18, 7548-7561.                                                                                                                            | 3.0  | 6         |
| 76 | Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol. Applied Catalysis A: General, 2018, 568, 231-241.                                                                                     | 4.3  | 53        |
| 77 | Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: effect of support morphology. Catalysis Science and Technology, 2018, 8, 5646-5656.                                                                         | 4.1  | 52        |
| 78 | Catalytic Performance of Gold Supported on Mn, Fe and Ni Doped Ceria in the Preferential Oxidation of CO in H2-Rich Stream. Catalysts, 2018, 8, 469.                                                                                                        | 3.5  | 10        |
| 79 | Mechanistic insights into the catalytic role of various acid sites on ZSM-5 zeolite in the carbonylation of methanol and dimethyl ether. Catalysis Science and Technology, 2018, 8, 3193-3204.                                                              | 4.1  | 29        |
| 80 | Comparative Study of Methanol to Olefins Over ZSM-5, ZSM-11, ZSM-22 and EU-1: Dependence of<br>Catalytic Performance on the Zeolite Framework Structure. Journal of Nanoscience and<br>Nanotechnology, 2017, 17, 3680-3688.                                 | 0.9  | 11        |
| 81 | Effect of tungsten surface density of WO <sub>3</sub> –ZrO <sub>2</sub> on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Advances, 2017, 7, 8567-8574.                                                                   | 3.6  | 51        |
| 82 | Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation.<br>Applied Catalysis B: Environmental, 2017, 211, 89-97.                                                                                              | 20.2 | 48        |
| 83 | Systematic study of the crystallization process of CrAPO-5 using in situ high resolution X-ray diffraction. RSC Advances, 2017, 7, 22964-22973.                                                                                                             | 3.6  | 6         |
| 84 | Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals.<br>ChemSusChem, 2017, 10, 2547-2559.                                                                                                                           | 6.8  | 90        |
| 85 | Synthesis of Chainlike ZSM-5 Zeolites: Determination of Synthesis Parameters, Mechanism of Chainlike<br>Morphology Formation, and Their Performance in Selective Adsorption of Xylene Isomers. ACS Applied<br>Materials & Interfaces, 2017, 9, 14899-14910. | 8.0  | 39        |
| 86 | Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics. Catalysis Science and Technology, 2017, 7, 560-564.                                                                                                   | 4.1  | 25        |
| 87 | Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics. Fuel Processing Technology, 2017, 157, 99-107.                                                                                 | 7.2  | 138       |
| 88 | Controllable decoration of palladium sub-nanoclusters on reduced graphene oxide with superior<br>catalytic performance in selective oxidation of alcohols. Catalysis Science and Technology, 2017, 7,<br>5650-5661.                                         | 4.1  | 15        |
| 89 | Insight into the effect of incorporation of boron into ZSM-11 on its catalytic performance for conversion of methanol to olefins. Catalysis Science and Technology, 2017, 7, 4766-4779.                                                                     | 4.1  | 23        |
| 90 | Ordered mesoporous Nb–W oxides for the conversion of glucose to fructose, mannose and 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 2017, 200, 611-619.                                                                                      | 20.2 | 93        |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Polyurethane Foam-Based Ultramicroporous Carbons for CO <sub>2</sub> Capture. ACS Applied<br>Materials & Interfaces, 2016, 8, 18849-18859.                                                                                                          | 8.0  | 68        |
| 92  | Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34.<br>Catalysis Science and Technology, 2016, 6, 5526-5533.                                                                                               | 4.1  | 43        |
| 93  | Kinetics and thermodynamics of polymethylbenzene formation over zeolites with different pore sizes for understanding the mechanisms of methanol to olefin conversion – a computational study. Catalysis Science and Technology, 2016, 6, 5326-5335. | 4.1  | 21        |
| 94  | Kinetic study of vapor-phase Beckmann rearrangement of cyclohexanone oxime over silicalite-1.<br>Chemical Engineering Science, 2016, 153, 246-254.                                                                                                  | 3.8  | 18        |
| 95  | Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catalysis, 2016, 6, 7311-7325.                                                                                            | 11.2 | 285       |
| 96  | One-pot conversion of furfural to alkyl levulinate over bifunctional<br>Au-H <sub>4</sub> SiW <sub>12</sub> O <sub>40</sub> /ZrO <sub>2</sub> without external<br>H <sub>2</sub> . Green Chemistry, 2016, 18, 5667-5675.                            | 9.0  | 63        |
| 97  | Evolution of Aromatic Species in Supercages and Its Effect on the Conversion of Methanol to Olefins<br>over H-MCM-22 Zeolite: A Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120,<br>27964-27979.                        | 3.1  | 24        |
| 98  | Oriented control of Al locations in the framework of Al-Ge-ITQ-13 for catalyzing methanol conversion to propene. Journal of Catalysis, 2016, 344, 242-251.                                                                                          | 6.2  | 36        |
| 99  | Graphene oxide: an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene. Catalysis Science and Technology, 2016, 6, 993-997.                                                             | 4.1  | 53        |
| 100 | Stability and Reactivity of Intermediates of Methanol Related Reactions and C–C Bond Formation over<br>H-ZSM-5 Acidic Catalyst: A Computational Analysis. Journal of Physical Chemistry C, 2016, 120, 6075-6087.                                    | 3.1  | 50        |
| 101 | Self-metathesis of 1-butene to propene over SBA-15-supported WO <sub>3</sub> . Catalysis Science and Technology, 2016, 6, 5515-5525.                                                                                                                | 4.1  | 24        |
| 102 | Integrated Conversion of Hemicellulose and Furfural into γ-Valerolactone over Au/ZrO <sub>2</sub><br>Catalyst Combined with ZSM-5. ACS Catalysis, 2016, 6, 2035-2042.                                                                               | 11.2 | 143       |
| 103 | One-pot synthesis of mesoporous spherical SnO <sub>2</sub> @graphene for high-sensitivity formaldehyde gas sensors. RSC Advances, 2016, 6, 25198-25202.                                                                                             | 3.6  | 53        |
| 104 | Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 2016, 6, 2299-2313.                                        | 11.2 | 113       |
| 105 | Influence of Zn species in HZSM-5 on ethylene aromatization. Chinese Journal of Catalysis, 2015, 36, 880-888.                                                                                                                                       | 14.0 | 83        |
| 106 | Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of<br>Methanol to Olefins over H-ZSM-5 Zeolite. Journal of Physical Chemistry C, 2015, 119, 28482-28498.                                                  | 3.1  | 105       |
| 107 | Methanol to Olefins over H-MCM-22 Zeolite: Theoretical Study on the Catalytic Roles of Various Pores. ACS Catalysis, 2015, 5, 1131-1144.                                                                                                            | 11.2 | 72        |
| 108 | High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene. Green Chemistry, 2015, 17, 2353-2357.                                                       | 9.0  | 100       |

| #   | Article                                                                                                                                                                                                                        | lF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Catalytic properties and deactivation behavior of H-MCM-22 in the conversion of methanol to hydrocarbons. RSC Advances, 2015, 5, 28794-28802.                                                                                  | 3.6  | 27        |
| 110 | Effect of zeolite pore structure on the diffusion and catalytic behaviors in the transalkylation of toluene with 1,2,4-trimethylbenzene. RSC Advances, 2015, 5, 66301-66310.                                                   | 3.6  | 25        |
| 111 | Surface-mediated selective photocatalytic aerobic oxidation reactions on TiO <sub>2</sub><br>nanofibres. RSC Advances, 2015, 5, 56820-56831.                                                                                   | 3.6  | 11        |
| 112 | Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route.<br>Scientific Reports, 2015, 5, 11521.                                                                                    | 3.3  | 43        |
| 113 | One-pot synthesis of hierarchical mordenite and its performance in the benzylation of benzene with benzyl alcohol. Journal of Materials Science, 2015, 50, 5059-5067.                                                          | 3.7  | 20        |
| 114 | Highly active Au–Pd nanoparticles supported on three-dimensional graphene–carbon nanotube hybrid<br>for selective oxidation of methanol to methyl formate. RSC Advances, 2015, 5, 44835-44839.                                 | 3.6  | 19        |
| 115 | Graphene-based catalysis for biomass conversion. Catalysis Science and Technology, 2015, 5, 3845-3858.                                                                                                                         | 4.1  | 100       |
| 116 | Synthesis of two-dimensional mesoporous carbon nitride under different carbonization temperatures and investigation of its catalytic properties in Knoevenagel condensations. RSC Advances, 2015, 5, 22838-22846.              | 3.6  | 32        |
| 117 | Ti-rich TS-1: A highly active catalyst for epoxidation of methallyl chloride to 2-methyl epichlorohydrin. Applied Catalysis A: General, 2015, 491, 78-85.                                                                      | 4.3  | 25        |
| 118 | A highly efficient and robust Cu/SiO <sub>2</sub> catalyst prepared by the ammonia evaporation<br>hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catalysis Science and<br>Technology, 2015, 5, 1169-1180. | 4.1  | 124       |
| 119 | Graphene Oxide: An Efficient Acid Catalyst for Alcoholysis and Esterification Reactions.<br>ChemCatChem, 2014, 6, 3080-3083.                                                                                                   | 3.7  | 87        |
| 120 | Theoretical Insights into the Mechanism of Olefin Elimination in the Methanol-to-Olefin Process over<br>HZSM-5, HMOR, HBEA, and HMCM-22 Zeolites. Journal of Physical Chemistry A, 2014, 118, 8901-8910.                       | 2.5  | 33        |
| 121 | Hollow Porous Carbon Fiber from Cotton with Nitrogen Doping. ChemPlusChem, 2014, 79, 284-289.                                                                                                                                  | 2.8  | 30        |
| 122 | Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous and Mesoporous Materials, 2014, 197, 252-261.                                                       | 4.4  | 338       |
| 123 | A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites.<br>Journal of Catalysis, 2014, 317, 277-283.                                                                                 | 6.2  | 151       |
| 124 | Cellulose generated-microporous carbon nanosheets with nitrogen doping. RSC Advances, 2014, 4, 9126-9132.                                                                                                                      | 3.6  | 31        |
| 125 | Presulfidation and activation mechanism of Mo/Al2O3 catalyst sulfided by ammonium thiosulfate.<br>Korean Journal of Chemical Engineering, 2014, 31, 1368-1376.                                                                 | 2.7  | 5         |
| 126 | Superior carbon-based CO2 adsorbents prepared from poplar anthers. Carbon, 2014, 69, 255-263.                                                                                                                                  | 10.3 | 85        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Catalytic Combustion of Lean Methane at Low Temperature Over Palladium on a CoO x –SiO2<br>Composite Support. Catalysis Letters, 2013, 143, 411-417.                                                                               | 2.6  | 18        |
| 128 | Graphene-supported Au–Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate. Chemical Communications, 2013, 49, 8250.                                              | 4.1  | 120       |
| 129 | Selective oxidation of alcohols to aldehydes/ketones over copper oxide-supported gold catalysts.<br>Journal of Catalysis, 2013, 299, 10-19.                                                                                        | 6.2  | 107       |
| 130 | A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor. Frontiers of Chemical Science and Engineering, 2013, 7, 347-356.                                                      | 4.4  | 5         |
| 131 | Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A, 2013, 1, 999-1013.                                                                                                                | 10.3 | 602       |
| 132 | Encapsulation of a catalytically active core with a nanoporous shell: a new strategy for designing size-selective catalysts. Journal of Materials Chemistry, 2012, 22, 9069.                                                       | 6.7  | 29        |
| 133 | Rapid tuning of ZSM-5 crystal size by using polyethylene glycol or colloidal silicalite-1 seed.<br>Microporous and Mesoporous Materials, 2012, 163, 192-200.                                                                       | 4.4  | 41        |
| 134 | Facile one-pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support. Journal of Materials Chemistry, 2011, 21, 3890.                                                                 | 6.7  | 98        |
| 135 | Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. Journal of<br>Materials Chemistry, 2011, 21, 14036.                                                                                           | 6.7  | 140       |
| 136 | Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over<br>organotin-functionalized mesoporous benzene-silica. Pure and Applied Chemistry, 2011, 84, 663-673.                                                 | 1.9  | 16        |
| 137 | Zinc Carboxylate Functionalized Mesoporous SBA-15 Catalyst for Selective Synthesis of Methyl-4,4′-di(phenylcarbamate). Catalysis Letters, 2009, 128, 405-412.                                                                      | 2.6  | 21        |
| 138 | Effect of ammonium salts on the synthesis and catalytic properties of TS-1. Microporous and Mesoporous Materials, 2009, 122, 301-308.                                                                                              | 4.4  | 46        |
| 139 | InÂSitu Preparation of Functional Heterogeneous Organotin Catalyst Tethered on SBA-15. Catalysis<br>Letters, 2008, 121, 297-302.                                                                                                   | 2.6  | 43        |
| 140 | Crystallization mechanism study on ZSM-48 in the system Na2O-Al2O3-SiO2-H2N(CH2)6NH2.<br>Microporous Materials, 1997, 8, 131-140.                                                                                                  | 1.6  | 10        |
| 141 | Effects of introduction of different alkali metal halides on crystallization and characteristics of ZSM-48 in a solid reaction mixture system Effects of alkali metal chlorides. Applied Catalysis A: General, 1996, 143, 299-308. | 4.3  | 17        |
| 142 | Synthesis and characterization of ZSM-48 in the pure solid system. Zeolites, 1995, 15, 73-76.                                                                                                                                      | 0.5  | 22        |
| 143 | Construction of Singleâ€Crystalline Hierarchical ZSMâ€5 with Open Nanoarchitectures via<br>Anisotropicâ€Kinetics Transformation for the Methanolâ€toâ€Hydrocarbons Reaction. Angewandte Chemie,<br>0, , .                          | 2.0  | 0         |
| 144 | CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review. Frontiers in Chemistry, 0, 10, .                                                                                                                     | 3.6  | 4         |