List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1130639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ICTV Virus Taxonomy Profile: Asfarviridae. Journal of General Virology, 2018, 99, 613-614.	2.9	292
2	Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature, 1999, 401, 76-79.	27.8	235
3	Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. Journal of Cell Biology, 2001, 155, 331-338.	5.2	204
4	BA71ΔCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. Journal of Virology, 2017, 91, .	3.4	189
5	The African Swine Fever Virus Proteins p54 and p30 Are Involved in Two Distinct Steps of Virus Attachment and Both Contribute to the Antibody-Mediated Protective Immune Response. Virology, 1998, 243, 461-471.	2.4	175
6	DNA Vaccination Partially Protects against African Swine Fever Virus Lethal Challenge in the Absence of Antibodies. PLoS ONE, 2012, 7, e40942.	2.5	132
7	DNA Immunization with Minigenes: Low Frequency of Memory Cytotoxic T Lymphocytes and Inefficient Antiviral Protection Are Rectified by Ubiquitination. Journal of Virology, 1998, 72, 5174-5181.	3.4	131
8	Cellular immunity in ASFV responses. Virus Research, 2013, 173, 110-121.	2.2	120
9	Standardization of pathological investigations in the framework of experimental ASFV infections. Virus Research, 2013, 173, 180-190.	2.2	103
10	Immunodominance in Virus-Induced CD8 + T-Cell Responses Is Dramatically Modified by DNA Immunization and Is Regulated by Gamma Interferon. Journal of Virology, 2002, 76, 4251-4259.	3.4	102
11	Expression Library Immunization Can Confer Protection against Lethal Challenge with African Swine Fever Virus. Journal of Virology, 2014, 88, 13322-13332.	3.4	101
12	Targeting plasmid-encoded proteins to the antigen presentation pathways. Immunological Reviews, 2004, 199, 40-53.	6.0	74
13	Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Veterinary Research, 2015, 46, 135.	3.0	74
14	A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine, 2005, 23, 3741-3752.	3.8	73
15	African swine fever vaccines: a promising work still in progress. Porcine Health Management, 2020, 6, 17.	2.6	69
16	Genome Sequence of African Swine Fever Virus BA71, the Virulent Parental Strain of the Nonpathogenic and Tissue-Culture Adapted BA71V. PLoS ONE, 2015, 10, e0142889.	2.5	69
17	BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Research, 2013, 98, 61-65.	4.1	63
18	CD4 + T Cells Induced by a DNA Vaccine: Immunological Consequences of Epitope-Specific Lysosomal Targeting. Journal of Virology, 2001, 75, 10421-10430.	3.4	60

#	Article	IF	CITATIONS
19	Experimental Infection of Young Adult European Breed Sheep with Rift Valley Fever Virus Field Isolates. Vector-Borne and Zoonotic Diseases, 2010, 10, 689-696.	1.5	60
20	Recent advances in the development of recombinant vaccines against classical swine fever virus: Cellular responses also play a role in protection. Veterinary Journal, 2008, 177, 169-177.	1.7	59
21	Viruses can silently prime for and trigger central nervous system autoimmune disease. Journal of NeuroVirology, 2001, 7, 220-227.	2.1	53
22	A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNARâ^'/â^' mice upon lethal virus challenge. Vaccine, 2011, 29, 4469-4475.	3.8	52
23	Enhancing DNA Immunization. Virology, 2000, 268, 233-238.	2.4	50
24	Quantitative and qualitative analyses of the immune responses induced by a multivalent minigene DNA vaccine. Vaccine, 2000, 18, 2132-2141.	3.8	45
25	The structural protein p54 is essential for African swine fever virus viability. Virus Research, 1996, 40, 161-167.	2.2	44
26	DNA immunization: mechanistic studies. Vaccine, 1999, 17, 1612-1619.	3.8	44
27	Two Overlapping Subdominant Epitopes Identified by DNA Immunization Induce Protective CD8 + T-Cell Populations with Differing Cytolytic Activities. Journal of Virology, 2001, 75, 7399-7409.	3.4	44
28	Immunity conferred by an experimental vaccine based on the recombinant PCV2 Cap protein expressed in Trichoplusia ni-larvae. Vaccine, 2010, 28, 2340-2349.	3.8	37
29	DNA Vaccination Can Break Immunological Tolerance to PrP in Wild-Type Mice and Attenuates Prion Disease after Intracerebral Challenge. Journal of Virology, 2006, 80, 9970-9976.	3.4	36
30	DNA vaccines expressing B and T cell epitopes can protect mice from FMDV infection in the absence of specific humoral responses. Vaccine, 2006, 24, 3889-3899.	3.8	34
31	A new method to identify cell types that support porcine circovirus type 2 replication in formalin-fixed, paraffin-embedded swine tissues. Journal of Virological Methods, 2007, 146, 86-95.	2.1	31
32	Disruption of Nuclear Organization during the Initial Phase of African Swine Fever Virus Infection. Journal of Virology, 2011, 85, 8263-8269.	3.4	31
33	Comparative analysis of the fecal microbiota from different species of domesticated and wild suids. Scientific Reports, 2019, 9, 13616.	3.3	30
34	Priming with DNA plasmids encoding the nucleocapsid protein and glycoprotein precursors from Rift Valley fever virus accelerates the immune responses induced by an attenuated vaccine in sheep. Vaccine, 2008, 26, 5255-5262.	3.8	28
35	Live Attenuated African Swine Fever Viruses as Ideal Tools to Dissect the Mechanisms Involved in Cross-Protection. Viruses, 2020, 12, 1474.	3.3	27
36	Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs. Antiviral Research, 2014, 108, 165-172.	4.1	26

#	Article	IF	CITATIONS
37	Deletion of E184L, a Putative DIVA Target from the Pandemic Strain of African Swine Fever Virus, Produces a Reduction in Virulence and Protection against Virulent Challenge. Journal of Virology, 2022, 96, JVI0141921.	3.4	24
38	A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge. Antiviral Research, 2011, 92, 359-363.	4.1	23
39	Conserved Synthetic Peptides from the Hemagglutinin of Influenza Viruses Induce Broad Humoral and T-Cell Responses in a Pig Model. PLoS ONE, 2012, 7, e40524.	2.5	23
40	Differential expression of porcine microRNAs in African swine fever virus infected pigs: a proof-of-concept study. Virology Journal, 2017, 14, 198.	3.4	22
41	Impaired anti-leukemic immune response in PKCÎ,-deficient mice. Molecular Immunology, 2008, 45, 3463-3469.	2.2	21
42	Development of two Trichoplusia ni larvae-derived ELISAs for the detection of antibodies against replicase and capsid proteins of porcine circovirus type 2 in domestic pigs. Journal of Virological Methods, 2008, 154, 167-174.	2.1	20
43	African swine fever virus infection in Classical swine fever subclinically infected wild boars. BMC Veterinary Research, 2017, 13, 227.	1.9	20
44	Identification of Promiscuous African Swine Fever Virus T-Cell Determinants Using a Multiple Technical Approach. Vaccines, 2021, 9, 29.	4.4	18
45	M448R and MGF505-7R: Two African Swine Fever Virus Antigens Commonly Recognized by ASFV-Specific T-Cells and with Protective Potential. Vaccines, 2021, 9, 508.	4.4	18
46	Computational Analysis of African Swine Fever Virus Protein Space for the Design of an Epitope-Based Vaccine Ensemble. Pathogens, 2020, 9, 1078.	2.8	16
47	DNA immunization with 2C FMDV non-structural protein reveals the presence of an immunodominant CD8+, CTL epitope for Balb/c mice. Antiviral Research, 2006, 72, 178-189.	4.1	15
48	Fecal microbiota transplantation from warthog to pig confirms the influence of the gut microbiota on African swine fever susceptibility. Scientific Reports, 2020, 10, 17605.	3.3	15
49	Do spacing and self-testing predict learning outcomes?. Active Learning in Higher Education, 2021, 22, 77-91.	5.4	15
50	DNA immunization of pigs with foot-and-mouth disease virus minigenes: From partial protection to disease exacerbation. Virus Research, 2011, 157, 121-125.	2.2	14
51	Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Veterinary Research, 2018, 49, 90.	3.0	14
52	Head-to-Head Comparison of Three Vaccination Strategies Based on DNA and Raw Insect-Derived Recombinant Proteins against Leishmania. PLoS ONE, 2012, 7, e51181.	2.5	13
53	Repurposing bioenergetic modulators against protozoan parasites responsible for tropical diseases. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 17-27.	3.4	13
54	Pigs naturally exposed to porcine circovirus type 2 (PCV2) generate antibody responses capable to neutralise PCV2 isolates of different genotypes and geographic origins. Veterinary Research, 2014, 45, 29.	3.0	12

#	Article	IF	CITATIONS
55	Commercial feed containing porcine plasma spiked with African swine fever virus is not infective in pigs when administered for 14 consecutive days. PLoS ONE, 2020, 15, e0235895.	2.5	11
56	Deletion Mutants of the Attenuated Recombinant ASF Virus, BA71ΔCD2, Show Decreased Vaccine Efficacy. Viruses, 2021, 13, 1678.	3.3	11
57	Targeting of a T Cell Agonist Peptide to Lysosomes by DNA Vaccination Induces Tolerance in the Nonobese Diabetic Mouse. Journal of Immunology, 2011, 186, 4078-4087.	0.8	10
58	Co-expression of the Bcl-xL antiapoptotic protein enhances the induction of Th1-like immune responses in mice immunized with DNA vaccines encoding FMDV B and T cell epitopes. Veterinary Research Communications, 2013, 37, 187-196.	1.6	10
59	The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens. Veterinary Research, 2014, 45, 7.	3.0	10
60	African swine fever virus does not express viral microRNAs in experimentally infected pigs. BMC Veterinary Research, 2018, 14, 268.	1.9	10
61	The genetic variation landscape of African swine fever virus reveals frequent positive selection and adaptive flexibility. Transboundary and Emerging Diseases, 2021, 68, 2703-2721.	3.0	10
62	Exposure to a Low Pathogenic A/H7N2 Virus in Chickens Protects against Highly Pathogenic A/H7N1 Virus but Not against Subsequent Infection with A/H5N1. PLoS ONE, 2013, 8, e58692.	2.5	7
63	Targeting myelin proteolipid protein to the MHC class I pathway by ubiquitination modulates the course of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2008, 204, 92-100.	2.3	5
64	Vaccination of pigs reduces Torque teno sus virus viremia during natural infection. Vaccine, 2015, 33, 3497-3503.	3.8	5
65	Sirolimus enhances the protection achieved by a DNA vaccine against Leishmania infantum. Parasites and Vectors, 2020, 13, 294.	2.5	4
66	A novel dual promoter DNA vaccine induces CD8+ response against Toxoplasma gondii sporozoite specific surface protein "SporoSAG―through non-apoptotic cells. Trials in Vaccinology, 2014, 3, 81-88.	1.2	3
67	Sow Vaccination with a Protein Fragment against Virulent Glaesserella (Haemophilus) parasuis Modulates Immunity Traits in Their Offspring. Vaccines, 2021, 9, 534.	4.4	3
68	Research paths to successful prevention and treatment of swine-derived H1N1 influenza virus infection. Drug News and Perspectives, 2010, 23, 65.	1.5	2
69	DNA Vaccines in Pigs: From Immunization to Antigen Identification. Methods in Molecular Biology, 2022, 2465, 109-124.	0.9	1
70	In Situ Hybridization with Labeled Probes: Assessment of African Swine Fever Virus in Formalin-Fixed Paraffin-Embedded Tissues. Methods in Molecular Biology, 2015, 1247, 209-218.	0.9	0
71	DNA Vaccines: Experiences in the Swine Model. Methods in Molecular Biology, 2016, 1349, 49-62.	0.9	0