List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11305407/publications.pdf

Version: 2024-02-01

275	176,037	159	284
papers	citations	h-index	g-index
319	319	319	53900
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal–Organic Frameworks in Humid Flue Gas. Journal of the American Chemical Society, 2022, 144, 2387-2396.	13.7	122
2	Entanglement of Square Nets in Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1539-1544.	13.7	26
3	Large Cages of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 2022, 55, 707-721.	15.6	71
4	Visualizing Pore Packing and Topology in MOFs. Journal of Chemical Education, 2022, 99, 1998-2004.	2.3	11
5	Evolution of MOF single crystals. CheM, 2022, 8, 1541-1543.	11.7	12
6	Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS Central Science, 2022, 8, 926-932.	11.3	59
7	lonic Conduction Mechanism and Design of Metal–Organic Framework Based Quasi-Solid-State Electrolytes. Journal of the American Chemical Society, 2022, 144, 13446-13450.	13.7	33
8	Covalent Organic Frameworks for Carbon Dioxide Capture from Air. Journal of the American Chemical Society, 2022, 144, 12989-12995.	13.7	118
9	Docking of Cu ^I and Ag ^I in Metal–Organic Frameworks for Adsorption and Separation of Xenon. Angewandte Chemie, 2021, 133, 3459-3463.	2.0	12
10	Docking of Cu ^I and Ag ^I in Metal–Organic Frameworks for Adsorption and Separation of Xenon. Angewandte Chemie - International Edition, 2021, 60, 3417-3421.	13.8	98
11	â€~Eye' of the molecule—a viewpoint. Faraday Discussions, 2021, 231, 145-149.	3.2	1
12	From Molecules to Frameworks to Superframework Crystals. Advanced Materials, 2021, 33, e2103808.	21.0	26
13	Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science, 2021, 374, 454-459.	12.6	281
14	Amidation, Esterification, and Thioesterification of a Carboxylâ€Functionalized Covalent Organic Framework. Angewandte Chemie, 2020, 132, 2039-2043.	2.0	22
15	Precise Control of Molecular Selfâ€Diffusion in Isoreticular and Multivariate Metalâ€Organic Frameworks. ChemPhysChem, 2020, 21, 32-35.	2.1	29
16	Amidation, Esterification, and Thioesterification of a Carboxylâ€Functionalized Covalent Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 2023-2027.	13.8	66
17	Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. CheM, 2020, 6, 142-152.	11.7	39
18	Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241.	11.7	96

#	Article	IF	Citations
19	Design of higher valency in covalent organic frameworks. Science, 2020, 370, .	12.6	189
20	Metal–Organic Frameworks for Water Harvesting from Air, Anywhere, Anytime. ACS Central Science, 2020, 6, 1348-1354.	11.3	248
21	The Reticular Chemist. Nano Letters, 2020, 20, 8432-8434.	9.1	28
22	3D Covalent Organic Frameworks Selectively Crystallized through Conformational Design. Journal of the American Chemical Society, 2020, 142, 20335-20339.	13.7	97
23	Sequencing of metals in multivariate metal-organic frameworks. Science, 2020, 369, 674-680.	12.6	165
24	Ester-Linked Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 14450-14454.	13.7	80
25	Anisotropic reticular chemistry. Nature Reviews Materials, 2020, 5, 764-779.	48.7	149
26	MOF water harvesters. Nature Nanotechnology, 2020, 15, 348-355.	31.5	400
27	Pore Chemistry of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2000238.	14.9	245
28	Individually Encapsulated Frame-in-Frame Structure. , 2020, 2, 685-690.		10
29	Standard Practices of Reticular Chemistry. ACS Central Science, 2020, 6, 1255-1273.	11.3	142
30	A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. Journal of the American Chemical Society, 2020, 142, 2218-2221.	13.7	183
31	Reticulating 1D Ribbons into 2D Covalent Organic Frameworks by Imine and Imide Linkages. Journal of the American Chemical Society, 2020, 142, 2771-2776.	13.7	118
32	Reticular Chemistry in All Dimensions. ACS Central Science, 2019, 5, 1295-1300.	11.3	166
33	Reticular Synthesis of Multinary Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11420-11424.	13.7	126
34	Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 17081-17085.	13.7	165
35	A Metal–Organic Framework of Organic Vertices and Polyoxometalate Linkers as a Solid-State Electrolyte. Journal of the American Chemical Society, 2019, 141, 17522-17526.	13.7	216
36	Coordinative Alignment in the Pores of MOFs for the Structural Determination of N-, S-, and P-Containing Organic Compounds Including Complex Chiral Molecules. Journal of the American Chemical Society, 2019, 141, 18862-18869.	13.7	49

#	Article	IF	CITATIONS
37	Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester. ACS Central Science, 2019, 5, 1699-1706.	11.3	340
38	Parallel Worlds Meet at Designed Interfaces with a Vast Number of Potential Frameworks. Biochemistry, 2019, 58, 3823-3824.	2.5	0
39	Multistep Solid-State Organic Synthesis of Carbamate-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11253-11258.	13.7	92
40	Isotherms of individual pores by gas adsorption crystallography. Nature Chemistry, 2019, 11, 562-570.	13.6	88
41	Porous Crystalline Olefin-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 6848-6852.	13.7	333
42	Reticular Chemistry: Molecular Precision in Infinite 2D and 3D. Molecular Frontiers Journal, 2019, 03, 66-83.	1.1	46
43	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	38.1	1,685
44	Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 5201-5210.	13.7	361
45	Covalent Organic Frameworks: Organic Chemistry Extended into Two and Three Dimensions. Trends in Chemistry, 2019, 1, 172-184.	8.5	232
46	Local Electronic Structure of Molecular Heterojunctions in a Single‣ayer 2D Covalent Organic Framework. Advanced Materials, 2019, 31, e1805941.	21.0	74
47	Identification of the strong BrÃ,nsted acid site in a metal–organic framework solid acid catalyst. Nature Chemistry, 2019, 11, 170-176.	13.6	198
48	Building a Global Culture of Science—The Vietnam Experience. Angewandte Chemie - International Edition, 2019, 58, 1552-1560.	13.8	5
49	3D Covalent Organic Frameworks of Interlocking 1D Square Ribbons. Journal of the American Chemical Society, 2019, 141, 677-683.	13.7	94
50	Aufbau einer globalen Wissenschaftskultur – die Vietnam‣rfahrung. Angewandte Chemie, 2019, 131, 1566-1575.	2.0	2
51	The role of reticular chemistry in the design of CO2 reduction catalysts. Nature Materials, 2018, 17, 301-307.	27.5	552
52	Chemical diversity in a metal–organic framework revealed by fluorescence lifetime imaging. Nature Communications, 2018, 9, 1647.	12.8	112
53	Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2018, 140, 1116-1122.	13.7	457
54	The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chemical Society Reviews, 2018, 47, 4642-4664.	38.1	126

#	Article	IF	Citations
55	Adsorption-based atmospheric water harvesting device for arid climates. Nature Communications, 2018, 9, 1191.	12.8	401
56	Urea-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 16438-16441.	13.7	140
57	Bioinspired Metal–Organic Framework Catalysts for Selective Methane Oxidation to Methanol. Journal of the American Chemical Society, 2018, 140, 18208-18216.	13.7	301
58	Metal–Organic Frameworks for Water Harvesting from Air. Advanced Materials, 2018, 30, e1704304.	21.0	500
59	Crystalline Dioxin-Linked Covalent Organic Frameworks from Irreversible Reactions. Journal of the American Chemical Society, 2018, 140, 12715-12719.	13.7	289
60	Molecular Weaving of Covalent Organic Frameworks for Adaptive Guest Inclusion. Journal of the American Chemical Society, 2018, 140, 16015-16019.	13.7	107
61	Cytoprotective metal-organic frameworks for anaerobic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10582-10587.	7.1	145
62	Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances, 2018, 4, eaat9180.	10.3	533
63	Linking Molybdenum–Sulfur Clusters for Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 13618-13622.	13.7	78
64	Conceptual Advances from Werner Complexes to Metal–Organic Frameworks. ACS Central Science, 2018, 4, 1457-1464.	11.3	101
65	Metal coordination as a template strategy to make resilient woven materials. Bulletin of Japan Society of Coordination Chemistry, 2018, 71, 12-17.	0.2	3
66	Single-crystal x-ray diffraction structures of covalent organic frameworks. Science, 2018, 361, 48-52.	12.6	868
67	Impact of Disordered Guest–Framework Interactions on the Crystallography of Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 8958-8964.	13.7	54
68	Conversion of Imine to Oxazole and Thiazole Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 9099-9103.	13.7	243
69	Facilitating Laboratory Research Experience Using Reticular Chemistry. Journal of Chemical Education, 2018, 95, 1512-1519.	2.3	38
70	Practical water production from desert air. Science Advances, 2018, 4, eaat3198.	10.3	406
71	Tuning the Interplay between Selectivity and Permeability of ZIF-7 Mixed Matrix Membranes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33401-33407.	8.0	74
72	The atom, the molecule, and the covalent organic framework. Science, 2017, 355, .	12.6	2,037

#	Article	IF	CITATIONS
73	Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2017, 139, 6448-6455.	13.7	197
74	Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 2017, 356, 430-434.	12.6	1,179
7 5	The †folklore†and reality of reticular chemistry. Materials Chemistry Frontiers, 2017, 1, 1304-1309.	5.9	47
76	Calcium <scp>l</scp> -Lactate Frameworks as Naturally Degradable Carriers for Pesticides. Journal of the American Chemical Society, 2017, 139, 8118-8121.	13.7	119
77	Multivariate metal-organic frameworks. National Science Review, 2017, 4, 296-298.	9.5	148
78	Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure. ACS Central Science, 2017, 3, 662-667.	11.3	79
79	Sequence-Dependent Materials. Accounts of Chemical Research, 2017, 50, 532-534.	15.6	59
80	A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13166-13172.	13.7	193
81	Hydroisomerization of <i>n</i> -Hexane Using Acidified Metal–Organic Framework and Platinum Nanoparticles. Journal of the American Chemical Society, 2017, 139, 12382-12385.	13.7	73
82	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	3.2	85
83	The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials, 2017, 2, .	48.7	1,075
84	The Chemistry of CO ₂ Capture in an Amine-Functionalized Metal–Organic Framework under Dry and Humid Conditions. Journal of the American Chemical Society, 2017, 139, 12125-12128.	13.7	371
85	Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight†Science, 2017, 358, .	12.6	5
86	Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight― Science, 2017, 358, .	12.6	16
87	Crystal structures as periodic graphs: the topological genome and graph databases. Structural Chemistry, 2017, 28, 39-44.	2.0	22
88	Plasmon-Enhanced Photocatalytic CO ₂ Conversion within Metal–Organic Frameworks under Visible Light. Journal of the American Chemical Society, 2017, 139, 356-362.	13.7	511
89	Covalent Organic Frameworks—Organic Chemistry Beyond the Molecule. Molecules, 2017, 22, 1575.	3.8	31
90	Reticular Chemistryâ€"Construction, Properties, and Precision Reactions of Frameworks. Journal of the American Chemical Society, 2016, 138, 15507-15509.	13.7	265

#	Article	IF	CITATIONS
91	The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy, 2016, 1, .	39.5	374
92	Two Principles of Reticular Chemistry Uncovered in a Metal–Organic Framework of Heterotritopic Linkers and Infinite Secondary Building Units. Journal of the American Chemical Society, 2016, 138, 10826-10829.	13.7	68
93	Nanoporous Transparent MOF Glasses with Accessible Internal Surface. Journal of the American Chemical Society, 2016, 138, 10818-10821.	13.7	83
94	Coordinative alignment of molecules in chiral metal-organic frameworks. Science, 2016, 353, 808-811.	12.6	262
95	Structures of Metal–Organic Frameworks with Rod Secondary Building Units. Chemical Reviews, 2016, 116, 12466-12535.	47.7	732
96	High Methane Storage Working Capacity in Metal–Organic Frameworks with Acrylate Links. Journal of the American Chemical Society, 2016, 138, 10244-10251.	13.7	253
97	Chemical Conversion of Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 15519-15522.	13.7	373
98	Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks. Scientific Reports, 2016, 6, 19097.	3.3	59
99	Copper Nanocrystals Encapsulated in Zr-based Metal–Organic Frameworks for Highly Selective CO ₂ Hydrogenation to Methanol. Nano Letters, 2016, 16, 7645-7649.	9.1	370
100	Synthesis of a Water-soluble Metal–Organic Complex Array. Journal of Visualized Experiments, 2016, , .	0.3	1
101	Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal–Organic Framework Crystals. Journal of the American Chemical Society, 2016, 138, 8352-8355.	13.7	186
102	Weaving of organic threads into a crystalline covalent organic framework. Science, 2016, 351, 365-369.	12.6	427
103	A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 4330-4333.	13.7	260
104	Covalent Chemistry beyond Molecules. Journal of the American Chemical Society, 2016, 138, 3255-3265.	13.7	328
105	Cooperative effects at the interface of nanocrystalline metal–organic frameworks. Nano Research, 2016, 9, 47-58.	10.4	57
106	A water-soluble metal–organic complex array as a multinuclear heterometallic peptide amphiphile that shows unconventional anion dependency in its self-assembly. Chemical Communications, 2016, 52, 1579-1581.	4.1	11
107	Definitive Molecular Level Characterization of Defects in UiOâ€66 Crystals. Angewandte Chemie - International Edition, 2015, 54, 11162-11167.	13.8	376
108	Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7810-7816.	13.7	278

#	Article	IF	Citations
109	Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 2015, 137, 2641-2650.	13.7	339
110	Mesoscopic Constructs of Ordered and Oriented Metal–Organic Frameworks on Plasmonic Silver Nanocrystals. Journal of the American Chemical Society, 2015, 137, 2199-2202.	13.7	141
111	"Heterogeneity within Order―in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 3417-3430.	13.8	465
112	Modular Synthesis of Metal–Organic Complex Arrays Containing Precisely Designed Metal Sequences. Inorganic Chemistry, 2015, 54, 1197-1199.	4.0	16
113	Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6966-6997.	47.7	477
114	Heterogeneity of functional groups in a metal–organic framework displays magic number ratios. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5591-5596.	7.1	36
115	The Development of Global Science. ACS Central Science, 2015, 1, 18-23.	11.3	9
116	<scp> </scp> -Aspartate links for stable sodium metal–organic frameworks. Chemical Communications, 2015, 51, 17463-17466.	4.1	28
117	Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2015, 137, 14129-14135.	13.7	966
118	Covalent organic frameworks comprising cobalt porphyrins for catalytic CO ₂ reduction in water. Science, 2015, 349, 1208-1213.	12.6	2,046
119	Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. Journal of the American Chemical Society, 2015, 137, 15394-15397.	13.7	274
120	Chemistry of Covalent Organic Frameworks. Accounts of Chemical Research, 2015, 48, 3053-3063.	15.6	1,333
121	Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. Nature, 2015, 527, 503-507.	27.8	212
122	Structure-Based Design of Functional Amyloid Materials. Journal of the American Chemical Society, 2014, 136, 18044-18051.	13.7	102
123	Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 2014, 136, 4369-4381.	13.7	2,002
124	Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 2014, 42, 1-21.	7.2	66
125	High Methane Storage Capacity in Aluminum Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 5271-5274.	13.7	410
126	Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chemical Reviews, 2014, 114, 1343-1370.	47.7	1,010

#	Article	IF	Citations
127	Designed amyloid fibers as materials for selective carbon dioxide capture. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 191-196.	7.1	93
128	Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chemical Science, 2014, 5, 4693-4700.	7.4	295
129	Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts. Nano Letters, 2014, 14, 5979-5983.	9.1	235
130	Superacidity in Sulfated Metal–Organic Framework-808. Journal of the American Chemical Society, 2014, 136, 12844-12847.	13.7	457
131	Synthesis and hydrogen adsorption properties of internally polarized 2,6-azulenedicarboxylate based metal–organic frameworks. Journal of Materials Chemistry A, 2014, 2, 18823-18830.	10.3	29
132	Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabaziteâ€Type Zeolitic Imidazolate Frameworks. Angewandte Chemie - International Edition, 2014, 53, 10645-10648.	13.8	225
133	Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano, 2014, 8, 7451-7457.	14.6	660
134	Synthesis and Characterization of Metal–Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals. Inorganic Chemistry, 2014, 53, 5881-5883.	4.0	397
135	Metal–Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water. Journal of the American Chemical Society, 2014, 136, 8863-8866.	13.7	369
136	A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chemical Communications, 2013, 49, 9500.	4.1	514
137	Mapping of Functional Groups in Metal-Organic Frameworks. Science, 2013, 341, 882-885.	12.6	411
138	Thermal maps of gases in heterogeneous reactions. Nature, 2013, 502, 537-540.	27.8	52
139	Dielectrophoresis-Assembled Zeolitic Imidazolate Framework Nanoparticle-Coupled Resonators for Highly Sensitive and Selective Gas Detection. Nano Letters, 2013, 13, 5271-5276.	9.1	72
140	The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013, 341, 1230444.	12.6	12,032
141	Crystalline Fibers of Metal–Peptide Double Ladders. Inorganic Chemistry, 2013, 52, 13818-13820.	4.0	10
142	Single-Crystal Structure of a Covalent Organic Framework. Journal of the American Chemical Society, 2013, 135, 16336-16339.	13.7	392
143	A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2013, 117, 10326-10335.	3.1	83
144	Photophysical pore control in an azobenzene-containing metal–organic framework. Chemical Science, 2013, 4, 2858.	7.4	239

#	Article	IF	Citations
145	Zeolitic imidazolate framework-coupled resonators for enhanced gas detection. Journal of Micromechanics and Microengineering, 2013, 23, 125027.	2.6	18
146	NMR and X-ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2012, 116, 13307-13312.	3.1	150
147	Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 6443-6445.	4.0	763
148	A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H ₂ Uptake at 298 K. Journal of Physical Chemistry Letters, 2012, 3, 2671-2675.	4.6	95
149	A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2012, 116, 24084-24090.	3.1	112
150	New Porous Crystals of Extended Metal-Catecholates. Chemistry of Materials, 2012, 24, 3511-3513.	6.7	618
151	Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 673-674.	47.7	5,980
152	Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets. Chemical Reviews, 2012, 112, 675-702.	47.7	1,942
153	Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science, 2012, 336, 1018-1023.	12.6	1,729
154	Reversible Interpenetration in a Metal–Organic Framework Triggered by Ligand Removal and Addition. Angewandte Chemie - International Edition, 2012, 51, 8791-8795.	13.8	129
155	Porous, Conductive Metalâ€Triazolates and Their Structural Elucidation by the Chargeâ€Flipping Method. Chemistry - A European Journal, 2012, 18, 10595-10601.	3.3	227
156	Hydrogen Storage in New Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 13143-13151.	3.1	174
157	Isomers of Metal–Organic Complex Arrays. Inorganic Chemistry, 2012, 51, 6437-6439.	4.0	23
158	Metal–Organic Frameworks Incorporating Copperâ€Complexed Rotaxanes. Angewandte Chemie - International Edition, 2012, 51, 2160-2163.	13.8	105
159	Metal–Organic Frameworks of Vanadium as Catalysts for Conversion of Methane to Acetic Acid. Inorganic Chemistry, 2011, 50, 7388-7390.	4.0	144
160	Site-Specific CO ₂ Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network. Journal of Physical Chemistry C, 2011, 115, 24915-24919.	3.1	141
161	Incorporation of active metal sites in MOFs via in situ generated ligand deficient metal–linker complexes. Chemical Communications, 2011, 47, 11882.	4.1	35
162	Crystalline Covalent Organic Frameworks with Hydrazone Linkages. Journal of the American Chemical Society, 2011, 133, 11478-11481.	13.7	731

#	Article	IF	Citations
163	Isoreticular Expansion of Metal–Organic Frameworks with Triangular and Square Building Units and the Lowest Calculated Density for Porous Crystals. Inorganic Chemistry, 2011, 50, 9147-9152.	4.0	322
164	Heterogeneity within Order in Crystals of a Porous Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 11920-11923.	13.7	227
165	Synthesis of Metalâ^'Organic Complex Arrays. Journal of the American Chemical Society, 2011, 133, 759-761.	13.7	60
166	Postsynthetic Modification of a Metal–Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake. Inorganic Chemistry, 2011, 50, 6853-6855.	4.0	194
167	A Multiunit Catalyst with Synergistic Stability and Reactivity: A Polyoxometalate–Metal Organic Framework for Aerobic Decontamination. Journal of the American Chemical Society, 2011, 133, 16839-16846.	13.7	475
168	Covalent Organic Frameworks with High Charge Carrier Mobility. Chemistry of Materials, 2011, 23, 4094-4097.	6.7	659
169	Framework mobility in the metal–organic framework crystal IRMOF-3: Evidence for aromatic ring and amine rotation. Journal of Molecular Structure, 2011, 1004, 94-101.	3.6	68
170	Strong and Reversible Binding of Carbon Dioxide in a Green Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 15312-15315.	13.7	346
171	Asymmetric catalytic reactions by NbO-type chiral metal–organic frameworks. Chemical Science, 2011, 2, 877.	7.4	199
172	Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 2010, 43, 58-67.	15.6	2,268
173	Metal–Organic Frameworks from Edible Natural Products. Angewandte Chemie - International Edition, 2010, 49, 8630-8634.	13.8	568
174	A Catenated Strut in a Catenated Metal–Organic Framework. Angewandte Chemie - International Edition, 2010, 49, 6751-6755.	13.8	103
175	Exceptional ammonia uptake by a covalent organic framework. Nature Chemistry, 2010, 2, 235-238.	13.6	829
176	Robust dynamics. Nature Chemistry, 2010, 2, 439-443.	13.6	233
177	Metal Insertion in a Microporous Metalâ^'Organic Framework Lined with 2,2′-Bipyridine. Journal of the American Chemical Society, 2010, 132, 14382-14384.	13.7	514
178	A Combined Experimentalâ^'Computational Investigation of Carbon Dioxide Capture in a Series of Isoreticular Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2010, 132, 11006-11008.	13.7	303
179	Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment. Journal of Physical Chemistry A, 2010, 114, 10824-10833.	2.5	177
180	Ring-Opening Reactions within Porous Metalâ^'Organic Frameworks. Inorganic Chemistry, 2010, 49, 6387-6389.	4.0	115

#	Article	IF	Citations
181	Ultrahigh Porosity in Metal-Organic Frameworks. Science, 2010, 329, 424-428.	12.6	3,306
182	Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 2010, 327, 846-850.	12.6	1,607
183	Metal–organic frameworks with designed chiral recognition sites. Chemical Communications, 2010, 46, 4911.	4.1	82
184	A Metalâ^'Organic Framework with Covalently Bound Organometallic Complexes. Journal of the American Chemical Society, 2010, 132, 9262-9264.	13.7	206
185	A metal–organic framework replete with ordered donor–acceptor catenanes. Chemical Communications, 2010, 46, 380-382.	4.1	94
186	Azulene based metal–organic frameworks for strong adsorption of H2. Chemical Communications, 2010, 46, 7981.	4.1	57
187	Reticular Chemistry and Metal-Organic Frameworks for Clean Energy. MRS Bulletin, 2009, 34, 682-690.	3.5	7 5
188	Rigidâ€Strutâ€Containing Crown Ethers and [2]Catenanes for Incorporation into Metal–Organic Frameworks. Chemistry - A European Journal, 2009, 15, 13356-13380.	3.3	88
189	Isoreticular Metalation of Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2009, 131, 9492-9493.	13.7	266
190	Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. Journal of the American Chemical Society, 2009, 131, 8875-8883.	13.7	2,208
191	Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1257.	38.1	2,243
192	Synthesis and Structure of Chemically Stable Metalâ^'Organic Polyhedra. Journal of the American Chemical Society, 2009, 131, 12532-12533.	13.7	150
193	Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties. Journal of the American Chemical Society, 2009, 131, 3875-3877.	13.7	1,297
194	The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1213.	38.1	2,196
195	A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. Journal of the American Chemical Society, 2009, 131, 4570-4571.	13.7	1,299
196	Docking in Metal-Organic Frameworks. Science, 2009, 325, 855-859.	12.6	360
197	Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20637-20640.	7.1	1,042
198	Reticular Chemistry of Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2008, 47, 5136-5147.	13.8	849

#	Article	IF	Citations
199	Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64, 8553-8557.	1.9	853
200	High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO ₂ Capture. Science, 2008, 319, 939-943.	12.6	3,592
201	Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453, 207-211.	27.8	1,452
202	The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Accounts of Chemical Research, 2008, 41, 1782-1789.	15.6	1,953
203	Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 406-407.	13.7	485
204	Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials. Journal of the American Chemical Society, 2008, 130, 11580-11581.	13.7	746
205	Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2008, 130, 12626-12627.	13.7	655
206	Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metalâ 'Organic Frameworks and Polyhedra. Journal of the American Chemical Society, 2008, 130, 11650-11661.	13.7	498
207	Metal-organic frameworks with high capacity and selectivity for harmful gases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11623-11627.	7.1	820
208	Amphidynamic Character of Crystalline MOF-5:  Rotational Dynamics of Terephthalate Phenylenes in a Free-Volume, Sterically Unhindered Environment. Journal of the American Chemical Society, 2008, 130, 3246-3247.	13.7	229
209	Reticular Synthesis of Covalent Organic Borosilicate Frameworks. Journal of the American Chemical Society, 2008, 130, 11872-11873.	13.7	352
210	Hyperpolarized 129Xe Nuclear Magnetic Resonance Studies of Isoreticular Metal-Organic Frameworks. Journal of Physical Chemistry C, 2007, 111, 6060-6067.	3.1	43
211	Raman Spectroscopic Investigation of CH4and N2Adsorption in Metalâ^'Organic Frameworks. Chemistry of Materials, 2007, 19, 3681-3685.	6.7	93
212	Impact of Preparation and Handling on the Hydrogen Storage Properties of $Zn < sub > 4 < sub > 0(1,4-benzenedicarboxylate) < sub > 3 < sub > (MOF-5)$. Journal of the American Chemical Society, 2007, 129, 14176-14177.	13.7	1,498
213	Taxonomy of periodic nets and the design of materials. Physical Chemistry Chemical Physics, 2007, 9, 1035-1043.	2.8	239
214	Reticular Synthesis of Microporous and Mesoporous 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 12914-12915.	13.7	682
215	Designed Synthesis of 3D Covalent Organic Frameworks. Science, 2007, 316, 268-272.	12.6	2,024
216	Zeolite A imidazolate frameworks. Nature Materials, 2007, 6, 501-506.	27.5	917

#	Article	IF	CITATIONS
217	Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks. Journal of Materials Chemistry, 2007, 17, 3197.	6.7	536
218	Exceptional H2Saturation Uptake in Microporous Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2006, 128, 3494-3495.	13.7	1,172
219	Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. Chemical Communications, 2006, , 278-280.	4.1	132
220	Crystal Structure, Dissolution, and Deposition of a 5 nm Functionalized Metalâ^'Organic Great Rhombicuboctahedron. Journal of the American Chemical Society, 2006, 128, 8398-8399.	13.7	170
221	Three-periodic nets and tilings: edge-transitive binodal structures. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, 350-355.	0.3	206
222	Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metalâ 'Organic Frameworks. Journal of the American Chemical Society, 2006, 128, 1304-1315.	13.7	1,710
223	Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10186-10191.	7.1	5,906
224	A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie - International Edition, 2006, 45, 1390-1393.	13.8	1,128
225	Polymer-Induced Heteronucleation for the Discovery of New Extended Solids. Angewandte Chemie - International Edition, 2006, 45, 2553-2556.	13.8	139
226	A Metal–Organic Framework with a Hierarchical System of Pores and Tetrahedral Building Blocks. Angewandte Chemie - International Edition, 2006, 45, 2528-2533.	13.8	196
227	What do we know about three-periodic nets?. Journal of Solid State Chemistry, 2005, 178, 2533-2554.	2.9	247
228	Raman spectra of hydrogen and deuterium adsorbed on a metal–organic framework. Chemical Physics Letters, 2005, 411, 516-519.	2.6	61
229	Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. Science, 2005, 309, 1350-1354.	12.6	842
230	Metalâ^'Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society, 2005, 127, 17998-17999.	13.7	2,573
231	Porous, Crystalline, Covalent Organic Frameworks. Science, 2005, 310, 1166-1170.	12.6	5,574
232	Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angewandte Chemie - International Edition, 2005, 44, 4670-4679.	13.8	2,287
233	High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angewandte Chemie - International Edition, 2005, 44, 4745-4749.	13.8	990
234	Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. ChemInform, 2005, 36, no.	0.0	2

#	Article	IF	Citations
235	Strategies for Hydrogen Storage in Metalâ€"Organic Frameworks. ChemInform, 2005, 36, no.	0.0	5
236	Porous Metalâ^Organic Truncated Octahedron Constructed from Paddle-Wheel Squares and Terthiophene Links. Journal of the American Chemical Society, 2005, 127, 12752-12753.	13.7	205
237	Transformation of a Metalâ^'Organic Framework from the NbO to PtS Net. Inorganic Chemistry, 2005, 44, 181-183.	4.0	159
238	Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra. Journal of the American Chemical Society, 2005, 127, 7110-7118.	13.7	579
239	Rod Packings and Metalâ^'Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society, 2005, 127, 1504-1518.	13.7	2,186
240	Reticular Chemistry:  Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. Accounts of Chemical Research, 2005, 38, 176-182.	15.6	2,072
241	Characterization of H2Binding Sites in Prototypical Metalâ° Organic Frameworks by Inelastic Neutron Scattering. Journal of the American Chemical Society, 2005, 127, 14904-14910.	13.7	285
242	Metal-Organic Frameworks Based on Trigonal Prismatic Building Blocks and the New "acs―Topology. Inorganic Chemistry, 2005, 44, 2998-3000.	4.0	276
243	A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427, 523-527.	27.8	2,574
244	Three-periodic nets and tilings: minimal nets. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, 517-520.	0.3	101
245	Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 2004, 73, 3-14.	4.4	2,520
246	Design of New Materials for Methane Storage. Langmuir, 2004, 20, 2683-2689.	3.5	663
247	Hydrogen Sorption in Functionalized Metalâ°'Organic Frameworks. Journal of the American Chemical Society, 2004, 126, 5666-5667.	13.7	1,258
248	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129.	12.6	4,435
249	The CdSO4, rutile, cooperite and quartz dual nets: interpenetration and catenation. Solid State Sciences, 2003, 5, 73-78.	3.2	101
250	Layered Structures Constructed from New Linkages of Ge7(O,OH,F)19 Clusters ChemInform, 2003, 34, no.	0.0	0
251	Synthesis and Characterization of Zirconogermanates ChemInform, 2003, 34, no.	0.0	0
252	Computation of Aromatic C3N4 Networks and Synthesis of the Molecular Precursor N(C3N3)3Cl6. Chemistry - A European Journal, 2003, 9, 4197-4201.	3.3	55

#	Article	IF	Citations
253	Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of [Zn4O(TCA)2] Having the Pyrite Topology. Angewandte Chemie - International Edition, 2003, 42, 3907-3909.	13.8	200
254	Three-periodic nets and tilings: regular and quasiregular nets. Acta Crystallographica Section A: Foundations and Advances, 2003, 59, 22-27.	0.3	425
255	Three-periodic nets and tilings: semiregular nets. Acta Crystallographica Section A: Foundations and Advances, 2003, 59, 515-525.	0.3	222
256	Reticular synthesis and the design of new materials. Nature, 2003, 423, 705-714.	27.8	8,374
257	Layered Structures Constructed from New Linkages of Ge7(O,OH,F)19Clusters. Chemistry of Materials, 2003, 15, 714-718.	6.7	50
258	Synthesis and Characterization of Zirconogermanates. Inorganic Chemistry, 2003, 42, 5954-5959.	4.0	43
259	Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2:  A Framework Deliberately Designed To Have the NbO Structure Type. Journal of the American Chemical Society, 2002, 124, 376-377.	13.7	383
260	Advances in the chemistry of metal–organic frameworks. CrystEngComm, 2002, 4, 401-404.	2.6	271
261	One-Step Synthesis and Structure of an Oligo(spiro-orthocarbonate). Journal of the American Chemical Society, 2002, 124, 4942-4943.	13.7	18
262	Geometric requirements and examples of important structures in the assembly of square building blocks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4900-4904.	7.1	353
263	Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks The National Science Foundation support to M.O'K. (DMR-9804817) and O.M.Y. (DMR-9980469) is gratefully acknowledged Angewandte Chemie - International Edition, 2002, 41, 284.	13.8	293
264	Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 2002, 295, 469-472.	12.6	7,254
265	Tertiary Building Units: Synthesis, Structure, and Porosity of a Metalâ^'Organic Dendrimer Framework (MODF-1)⊥. Journal of the American Chemical Society, 2001, 123, 11482-11483.	13.7	113
266	Assembly of Metalâ^'Organic Frameworks from Large Organic and Inorganic Secondary Building Units:Â New Examples and Simplifying Principles for Complex Structuresâ–μ. Journal of the American Chemical Society, 2001, 123, 8239-8247.	13.7	789
267	A Flexible Germanate Structure Containing 24-Ring Channels and with Very Low Framework Density. Journal of the American Chemical Society, 2001, 123, 12706-12707.	13.7	163
268	Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metalâ^'Organic Carboxylate Frameworks. Accounts of Chemical Research, 2001, 34, 319-330.	15.6	4,980
269	Tailored Porous Materials. Chemistry of Materials, 1999, 11, 2633-2656.	6.7	714
270	A Microporous Lanthanide-Organic Framework. Angewandte Chemie - International Edition, 1999, 38, 2590-2594.	13.8	452

#	Article	IF	CITATIONS
271	Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids. Accounts of Chemical Research, 1998, 31, 474-484.	15.6	2,133
272	Open-Framework Solids with Diamond-Like Structures Prepared from Clusters and Metal-Organic Building Blocks. Materials Research Society Symposia Proceedings, 1994, 371, 15.	0.1	45
273	Induced molecule self-organization. Nature, 1991, 352, 115-116.	27.8	43
274	Reticular Chemistry of Metal-Organic Frameworks Composed of Copper and Zinc Metal Oxide Secondary Building Units as Nodes., 0,, 41-72.		4
275	Design of MOFs with Absolute Structures: A Case Study. Israel Journal of Chemistry, 0, , .	2.3	5