
Xiaomin Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1130507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and heterologous expression of a novel Co2+-dependent leucyl aminopeptidase Amp0279 originating from Lysinibacillus sphaericus. Applied Microbiology and Biotechnology, 2022, 106, 1139-1149.	3.6	1
2	Influence of the Phagemid PfNC7401 on Cereulide-Producing Bacillus cereus NC7401. Microorganisms, 2022, 10, 953.	3.6	1
3	Horizontal transfer of large plasmid with type IV secretion system and mosquitocidal genomic island with excision and integration capabilities in Lysinibacillus sphaericus. Environmental Microbiology, 2021, 23, 5131-5146.	3.8	5
4	Characterization of two newly isolated bacteriophages PW2 and PW4 and derived endolysins with lysis activity against Bacillus cereus group strains. Virus Research, 2021, 302, 198489.	2.2	6
5	Application of Bacillus thuringiensis strains with conjugal and mobilizing capability drives gene transmissibility within Bacillus cereus group populations in confined habitats. BMC Microbiology, 2020, 20, 363.	3.3	2
6	Characterization of a Novel Tanay Virus Isolated From Anopheles sinensis Mosquitoes in Yunnan, China. Frontiers in Microbiology, 2019, 10, 1963.	3.5	12
7	Effects of Propoxur Exposure on Insecticidal Susceptibility and Developmental Traits in Culex pipiens quinquefasciatus. Insects, 2019, 10, 288.	2.2	3
8	Mosquitoes of Etiological Concern in Kenya and Possible Control Strategies. Insects, 2019, 10, 173.	2.2	17
9	CesH Represses Cereulide Synthesis as an Alpha/Beta Fold Hydrolase in Bacillus cereus. Toxins, 2019, 11, 231.	3.4	8
10	Characterization of Ebinur Lake Virus and Its Human Seroprevalence at the China–Kazakhstan Border. Frontiers in Microbiology, 2019, 10, 3111.	3.5	14
11	Regulator DegU is required for multicellular behavior in Lysinibacillus sphaericus. Research in Microbiology, 2018, 169, 177-187.	2.1	8
12	vB_LspM-01: a novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41. Applied Microbiology and Biotechnology, 2018, 102, 10691-10702.	3.6	1
13	A toxin-antitoxin system is essential for the stability of mosquitocidal plasmid pBsph of Lysinibacillus sphaericus. Microbiological Research, 2018, 214, 114-122.	5.3	2
14	The LspC3–41I restriction-modification system is the major determinant for genetic manipulations of Lysinibacillus sphaericus C3–41. BMC Microbiology, 2017, 17, 116.	3.3	9
15	Characterization of three autolysins with activity against cereulide-producing Bacillus isolates in food matrices. International Journal of Food Microbiology, 2017, 241, 291-297.	4.7	12
16	Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus. PLoS ONE, 2017, 12, e0184572.	2.5	20
17	Polyphosphate kinase of Lysinibacillus sphaericus and its effects on accumulation of polyphosphate and bacterial growth. Microbiological Research, 2015, 172, 41-47.	5.3	13
18	Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics, 2015, 16, 140.	2.8	25

Χιαομιν Ηυ

#	Article	IF	CITATIONS
19	A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province. PLoS ONE, 2015, 10, e0129845.	2.5	53
20	A new tubRZ operon involved in the maintenance of the Bacillus sphaericus mosquitocidal plasmid pBsph. Microbiology (United Kingdom), 2014, 160, 1112-1124.	1.8	23
21	Collagen-Like Glycoprotein BclS Is Involved in the Formation of Filamentous Structures of the Lysinibacillus sphaericus Exosporium. Applied and Environmental Microbiology, 2014, 80, 6656-6663.	3.1	6
22	A Novel Transcriptional Activator, tubX , Is Required for the Stability of Bacillus sphaericus Mosquitocidal Plasmid pBsph. Journal of Bacteriology, 2014, 196, 4304-4314.	2.2	13
23	The genetic diversity of cereulide biosynthesis gene cluster indicates a composite transposon Tnces in emetic Bacillus weihenstephanensis. BMC Microbiology, 2014, 14, 149.	3.3	33
24	Generation of mariner-based transposon insertion mutant library of Bacillus sphaericus 2297 and investigation of genes involved in sporulation and mosquito-larvicidal crystal protein synthesis. FEMS Microbiology Letters, 2012, 330, 105-112.	1.8	11
25	Characterization of a novel temperate phage originating from a cereulide-producing Bacillus cereus strain. Research in Microbiology, 2011, 162, 446-459.	2.1	25
26	Allelic Diversity and Population Structure of Bacillus sphaericus as Revealed by Multilocus Sequence Typing. Applied and Environmental Microbiology, 2011, 77, 5553-5556.	3.1	21
27	Distribution, Diversity, and Potential Mobility of Extrachromosomal Elements Related to the <i>Bacillus anthracis</i> pXO1 and pXO2 Virulence Plasmids. Applied and Environmental Microbiology, 2009, 75, 3016-3028.	3.1	67
28	Sympatric soil communities of <i>Bacillus cereus sensu lato</i> : population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiology Ecology, 2009, 70, 344-355.	2.7	34
29	Family portrait of <i>Bacillus cereus</i> and <i>Bacillus weihenstephanensis</i> cereulideâ€producing strains. Environmental Microbiology Reports, 2009, 1, 177-183.	2.4	93
30	Phylogenetic Analysis and Heterologous Expression of Surface Layer Protein SlpC ofBacillus sphaericusC3-41. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1257-1263.	1.3	14
31	Complete Genome Sequence of the Mosquitocidal Bacterium <i>Bacillus sphaericus</i> C3-41 and Comparison with Those of Closely Related Bacillus Species. Journal of Bacteriology, 2008, 190, 2892-2902.	2.2	80
32	Molecular Characterization of a Glucokinase with Broad Hexose Specificity from Bacillus sphaericus Strain C3-41. Applied and Environmental Microbiology, 2007, 73, 3581-3586.	3.1	28
33	Detection and phylogenic analysis of one anthrax virulence plasmid pXO1 conservative open reading frame ubiquitous presented within Bacillus cereus group strains. Biochemical and Biophysical Research Communications, 2006, 349, 1214-1219.	2.1	7
34	Transfer and expression of the mosquitocidal plasmid pBtoxis in Bacillus cereus group strains. FEMS Microbiology Letters, 2005, 245, 239-247.	1.8	28
35	Conjugative transfer, stability and expression of a plasmid encoding acry1Ac gene inBacillus cereusgroup strains. FEMS Microbiology Letters, 2004, 231, 45-52.	1.8	41