Tianyao Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11304956/publications.pdf Version: 2024-02-01

TIANYAO DINC

#	Article	IF	CITATIONS
1	Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52, 1-10.	16.0	148
2	Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 8699-8703.	8.0	100
3	Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11589-11599.	8.0	88
4	The Progress of Li–S Batteries—Understanding of the Sulfur Redox Mechanism: Dissolved Polysulfide Ions in the Electrolytes. Advanced Materials Technologies, 2018, 3, 1700233.	5.8	85
5	Investigation of the Li–S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge. ACS Applied Materials & Interfaces, 2017, 9, 4326-4332.	8.0	70
6	High performance lithium-ion and lithium–sulfur batteries using prelithiated phosphorus/carbon composite anode. Energy Storage Materials, 2020, 24, 147-152.	18.0	60
7	A kinetically stable anode interface for Li ₃ YCl ₆ -based all-solid-state lithium batteries. Journal of Materials Chemistry A, 2021, 9, 15012-15018.	10.3	39
8	An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries. Journal of Power Sources, 2020, 478, 229067.	7.8	36
9	A redox-active organic salt for safer Na-ion batteries. Nano Energy, 2020, 72, 104705.	16.0	25
10	Nafion/PTFE Composite Membranes for a High Temperature PEM Fuel Cell Application. Industrial & Engineering Chemistry Research, 2021, 60, 11086-11094.	3.7	17
11	Systematic and rapid screening for the redox shuttle inhibitors in lithium-sulfur batteries. Electrochimica Acta, 2018, 282, 687-693.	5.2	15
12	A redox-active organic cation for safer metallic lithium-based batteries. Energy Storage Materials, 2020, 32, 185-190.	18.0	10
13	A redox-active organic cation for safer high energy density Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 17156-17162.	10.3	9
14	Examining the Chemical Stability of Battery Components with Polysulfide Species by High-Performance Liquid Chromatography and X-ray Photoelectron Spectroscopy. Industrial & Engineering Chemistry Research, 2022, 61, 3055-3062.	3.7	1
15	Reliable HPLC-MS method for the quantitative and qualitative analyses of dissolved polysulfide ions during the operation of Li-S batteries. , 2022, , 159-199.		0