
## Jean-François Lalonde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11303084/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Inferring the solution space of microscope objective lenses using deep learning. Optics Express, 2022, 30, 6531.                                                                                      | 1.7  | 11        |
| 2  | Imagery datasets for photobiological lighting analysis of architectural models with shading panels.<br>Data in Brief, 2022, 42, 108278.                                                               | 0.5  | 3         |
| 3  | Biophilic, photobiological and energy-efficient design framework of adaptive building façades for<br>Northern Canada. Indoor and Built Environment, 2021, 30, 665-691.                                | 1.5  | 11        |
| 4  | Rain Rendering for Evaluating and Improving Robustness to Bad Weather. International Journal of<br>Computer Vision, 2021, 129, 341-360.                                                               | 10.9 | 45        |
| 5  | Biophilic photobiological adaptive envelopes for sub-Arctic buildings: Exploring impacts of window sizes and shading panels' color, reflectance, and configuration. Solar Energy, 2021, 220, 802-827. | 2.9  | 11        |
| 6  | Differentiable Compound Optics and Processing Pipeline Optimization for End-to-end Camera Design.<br>ACM Transactions on Graphics, 2021, 40, 1-19.                                                    | 4.9  | 49        |
| 7  | Deep learning-enabled framework for automatic lens design starting point generation. Optics Express, 2021, 29, 3841.                                                                                  | 1.7  | 25        |
| 8  | On the use of deep learning for lens design. , 2021, , .                                                                                                                                              |      | 3         |
| 9  | Window View Access in Architecture: Spatial Visualization and Probability Evaluations Based on Human Vision Fields and Biophilia. Buildings, 2021, 11, 627.                                           | 1.4  | 6         |
| 10 | Human-centric lighting performance of shading panels in architecture: A benchmarking study with lab scale physical models under real skies. Solar Energy, 2020, 204, 354-368.                         | 2.9  | 16        |
| 11 | RGB-D-E: Event Camera Calibration for Fast 6-DOF object Tracking. , 2020, , .                                                                                                                         |      | 7         |
| 12 | Depth texture synthesis for high-resolution reconstruction of large scenes. Machine Vision and Applications, 2019, 30, 795-806.                                                                       | 1.7  | 1         |
| 13 | A photobiological approach to biophilic design in extreme climates. Building and Environment, 2019, 154, 211-226.                                                                                     | 3.0  | 30        |
| 14 | All-Weather Deep Outdoor Lighting Estimation. , 2019, , .                                                                                                                                             |      | 55        |
| 15 | Physics-Based Rendering for Improving Robustness to Rain. , 2019, , .                                                                                                                                 |      | 63        |
| 16 | Deep Sky Modeling for Single Image Outdoor Lighting Estimation. , 2019, , .                                                                                                                           |      | 74        |
| 17 | Introducing a dynamic deep neural network to infer lens design starting points. , 2019, , .                                                                                                           |      | 2         |
| 18 | Extrapolating from lens design databases using deep learning. Optics Express, 2019, 27, 28279.                                                                                                        | 1.7  | 26        |

| #  | Article                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Learning to Estimate Indoor Lighting from 3D Objects. , 2018, , .                                                                                 |      | 42        |
| 20 | A Framework for Evaluating 6-DOF Object Trackers. Lecture Notes in Computer Science, 2018, , 608-623.                                             | 1.0  | 20        |
| 21 | Deep 6-DOF Tracking. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 2410-2418.                                               | 2.9  | 70        |
| 22 | Learning High Dynamic Range from Outdoor Panoramas. , 2017, , .                                                                                   |      | 77        |
| 23 | Learning to predict indoor illumination from a single image. ACM Transactions on Graphics, 2017, 36, 1-14.                                        | 4.9  | 158       |
| 24 | Deep outdoor illumination estimation. , 2017, , .                                                                                                 |      | 142       |
| 25 | Depth Texture Synthesis for Realistic Architectural Modeling. , 2016, , .                                                                         |      | 1         |
| 26 | The Perception of Lighting Inconsistencies in Composite Outdoor Scenes. ACM Transactions on Applied Perception, 2015, 12, 1-18.                   | 1.2  | 7         |
| 27 | Lighting Estimation in Outdoor Image Collections. , 2014, , .                                                                                     |      | 41        |
| 28 | Estimating the Natural Illumination Conditions from a Single Outdoor Image. International Journal of<br>Computer Vision, 2012, 98, 123-145.       | 10.9 | 107       |
| 29 | What Do the Sun and the Sky Tell Us About the Camera?. International Journal of Computer Vision, 2010, 88, 24-51.                                 | 10.9 | 67        |
| 30 | SCALE SELECTION FOR GEOMETRIC FITTING IN NOISY POINT CLOUDS. International Journal of Computational Geometry and Applications, 2010, 20, 543-575. | 0.3  | 11        |
| 31 | Webcam clip art. ACM Transactions on Graphics, 2009, 28, 1-10.                                                                                    | 4.9  | 49        |
| 32 | What Does the Sky Tell Us about the Camera?. Lecture Notes in Computer Science, 2008, , 354-367.                                                  | 1.0  | 24        |
| 33 | Data Structures for Efficient Dynamic Processing in 3-D. International Journal of Robotics Research, 2007, 26, 777-796.                           | 5.8  | 18        |
| 34 | Photo clip art. , 2007, , .                                                                                                                       |      | 68        |
| 35 | Photo clip art. ACM Transactions on Graphics, 2007, 26, 3.                                                                                        | 4.9  | 207       |
| 36 | Natural terrain classification using three-dimensional ladar data for ground robot mobility. Journal of Field Robotics, 2006, 23, 839-861.        | 3.2  | 376       |