Flavio Moroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11302932/publications.pdf

Version: 2024-02-01

66911 44069 6,872 129 48 78 citations h-index g-index papers 129 129 129 6319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Differential mechanisms of tolerance induced by NMDA and 3,5â€dihydroxyphenylglycine (DHPG) preconditioning. Journal of Neurochemistry, 2020, 155, 638-649.	3.9	8
2	Effects of PARP-1 Deficiency and Histamine H4 Receptor Inhibition in an Inflammatory Model of Lung Fibrosis in Mice. Frontiers in Pharmacology, 2019, 10, 525.	3.5	10
3	Methadone Dose Adjustments, Plasma R-Methadone Levels and Therapeutic Outcome of Heroin Users: A Randomized Clinical Trial. European Addiction Research, 2018, 24, 9-18.	2.4	5
4	Opportunities for the repurposing of PARP inhibitors for the therapy of nonâ€oncological diseases. British Journal of Pharmacology, 2018, 175, 192-222.	5.4	160
5	Response to Letter to the Editor by Ernesto de Bernadis. European Addiction Research, 2018, 24, 89-90.	2.4	0
6	Glutamate Receptor-Mediated Neurotoxicity in a Model of Ethanol Dependence and Withdrawal in Rat Organotypic Hippocampal Slice Cultures. Frontiers in Neuroscience, 2018, 12, 1053.	2.8	12
7	<scp>HYDAMTIQ</scp> , a selective <scp>PARP</scp> â€l inhibitor, improves bleomycinâ€induced lung fibrosis by dampening the <scp>TGF</scp> â€l²/ <scp>SMAD</scp> signalling pathway. Journal of Cellular and Molecular Medicine, 2017, 21, 324-335.	3.6	47
8	The Inhibitory Effects of HYDAMTIQ, a Novel PARP Inhibitor, on Growth in Human Tumor Cell Lines With Defective DNA Damage Response Pathways. Oncology Research, 2017, 25, 1441-1451.	1.5	3
9	Ethanol Toxicity During Brain Development: Alterations of Excitatory Synaptic Transmission in Immature Organotypic Hippocampal Slice Cultures. Alcoholism: Clinical and Experimental Research, 2016, 40, 706-716.	2.4	21
10	Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation. Neuropharmacology, 2016, 108, 136-143.	4.1	56
11	Interplay between histone acetylation/deacetylation and poly(ADP-ribosyl)ation in the development of ischemic tolerance inÂvitro. Neuropharmacology, 2015, 92, 125-134.	4.1	18
12	Poly(ADP-Ribose)Polymerase 1 (PARP-1) Activation and Ca ²⁺ Permeable & Amp;#945;-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Channels in Post-Ischemic Brain Damage: New Therapeutic Opportunities?. CNS and Neurological Disorders - Drug Targets, 2015, 14, 636-646.	1.4	15
13	Poly(ADP â€ribose) polymerase inhibition with HYDAMTIQ reduces allergenâ€induced asthmaâ€ike reaction, bronchial hyperâ€reactivity and airway remodelling. Journal of Cellular and Molecular Medicine, 2014, 18, 468-479.	3.6	30
14	Arrays of MicroLEDs and Astrocytes: Biological Amplifiers to Optogenetically Modulate Neuronal Networks Reducing Light Requirement. PLoS ONE, 2014, 9, e108689.	2.5	21
15	Neurological Basis of AMP-Dependent Thermoregulation and its Relevance to Central and Peripheral Hyperthermia. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 183-190.	4.3	46
16	GPR35 Activation Reduces Ca2+ Transients and Contributes to the Kynurenic Acid-Dependent Reduction of Synaptic Activity at CA3-CA1 Synapses. PLoS ONE, 2013, 8, e82180.	2.5	60
17	Ischemic Neuroprotection by TRPV1 Receptor-Induced Hypothermia. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 978-982.	4.3	51
18	Mild activation of poly(ADPâ€ribose) polymerase (PARP) is neuroprotective in rat hippocampal slice models of ischemic tolerance. European Journal of Neuroscience, 2012, 36, 1993-2005.	2.6	25

#	Article	IF	Citations
19	Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. Journal of Neural Transmission, 2012, 119, 133-139.	2.8	156
20	Rat Hippocampal Slice Culture Models for the Evaluation of Neuroprotective Agents. Methods in Molecular Biology, 2012, 846, 343-354.	0.9	33
21	Discovery and characterization of novel potent PARP-1 inhibitors endowed with neuroprotective properties: From TIQ-A to HYDAMTIQ. MedChemComm, 2011, 2, 559.	3.4	17
22	G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: Studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology, 2011, 60, 1227-1231.	4.1	97
23	CB1 receptors and post-ischemic brain damage: Studies on the toxic and neuroprotective effects of cannabinoids in rat organotypic hippocampal slices. Neuropharmacology, 2011, 60, 674-682.	4.1	25
24	Different biochemical correlates for different neuropsychiatric abnormalities in patients with cirrhosis. Hepatology, 2011, 53, 558-566.	7.3	69
25	Poly(ADP-ribose) Polymerase-1 Is a Nuclear Epigenetic Regulator of Mitochondrial DNA Repair and Transcription. Molecular Pharmacology, 2011, 79, 932-940.	2.3	59
26	PARP-1 inhibition prevents CNS migration of dendritic cells during EAE, suppressing the encephalitogenic response and relapse severity. Multiple Sclerosis Journal, 2011, 17, 794-807.	3.0	43
27	Pharmacological Effects of Exogenous NAD on Mitochondrial Bioenergetics, DNA Repair, and Apoptosis. Molecular Pharmacology, 2011, 80, 1136-1146.	2.3	109
28	Peripheral and Splanchnic Indole and Oxindole Levels in Cirrhotic Patients: A Study on the Pathophysiology of Hepatic Encephalopathy. American Journal of Gastroenterology, 2010, 105, 1374-1381.	0.4	49
29	Inhibition of Nicotinamide Phosphoribosyltransferase. Journal of Biological Chemistry, 2010, 285, 34106-34114.	3.4	162
30	Brain Ischemic Preconditioning Does Not Require PARP-1. Stroke, 2010, 41, 181-183.	2.0	8
31	Poly(ADP-ribose) Catabolism Triggers AMP-dependent Mitochondrial Energy Failure. Journal of Biological Chemistry, 2009, 284, 17668-17676.	3.4	80
32	Chapter 23 Involvement of Endocannabinoid Signaling in the Neuroprotective Effects of Subtype 1 Metabotropic Glutamate Receptor Antagonists in Models of Cerebral Ischemia. International Review of Neurobiology, 2009, 85, 337-350.	2.0	15
33	Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiology of Disease, 2009, 36, 269-279.	4.4	123
34	Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo. Biochemical Pharmacology, 2009, 77, 1612-1620.	4.4	63
35	Postâ€ischemic brain damage: targeting PARPâ€1 within the ischemic neurovascular units as a realistic avenue to stroke treatment. FEBS Journal, 2009, 276, 36-45.	4.7	36
36	Effects of Mitochondria and O-Methoxybenzoylalanine on 3-Hydroxyanthranilic Acid Dioxygenase Activity and Quinolinic Acid Synthesis. Journal of Neurochemistry, 2008, 72, 1125-1132.	3.9	11

#	Article	IF	CITATIONS
37	On the Way to Selective PARPâ€2 Inhibitors. Design, Synthesis, and Preliminary Evaluation of a Series of Isoquinolinone Derivatives. ChemMedChem, 2008, 3, 914-923.	3.2	58
38	mGlu \hat{l}_{\pm} receptors are co-expressed with CB1 receptors in a subset of interneurons in the CA1 region of organotypic hippocampal slice cultures and adult rat brain. Neuropharmacology, 2008, 55, 428-439.	4.1	21
39	Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K–Akt signaling pathway: A novel postconditioning strategy?. Neuropharmacology, 2008, 55, 509-516.	4.1	62
40	Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Current Opinion in Pharmacology, 2008, 8, 96-103.	3 . 5	137
41	A Key Role for Poly(ADP-Ribose) Polymerase-1 Activity during Human Dendritic Cell Maturation. Journal of Immunology, 2007, 179, 305-312.	0.8	57
42	Neither energy collapse nor transcription underlie in vitro neurotoxicity of poly(ADP-ribose) polymerase hyper-activation. Neurochemistry International, 2007, 50, 203-210.	3.8	28
43	HCV patients, psychopathology and tryptophan metabolism: analysis of the effects of pegylated interferon plus ribavirin treatment. Digestive and Liver Disease, 2007, 39, S107-S111.	0.9	30
44	Differential role of mGlu1 and mGlu5 receptors in rat hippocampal slice models of ischemic tolerance. European Journal of Neuroscience, 2007, 25, 3597-3604.	2.6	36
45	Poly(ADP-ribosyl)ation regulates heat shock factor-1 activity and the heat shock response in murine fibroblasts. Biochemistry and Cell Biology, 2006, 84, 703-712.	2.0	24
46	Poly(ADP-ribose) Accumulation and Enhancement of Postischemic Brain Damage in 110-kDa Poly(ADP-ribose) Glycohydrolase Null Mice. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 684-695.	4.3	65
47	Pharmacological Inhibition of Histone Deacetylases by Suberoylanilide Hydroxamic Acid Specifically Alters Gene Expression and Reduces Ischemic Injury in the Mouse Brain. Molecular Pharmacology, 2006, 70, 1876-1884.	2.3	231
48	Poly(ADP-Ribose) Polymerase (PARP) and Excitotoxicity., 2006,, 153-163.		1
49	Kynurenic Acid Inhibits the Release of the Neurotrophic Fibroblast Growth Factor (FGF)-1 and Enhances Proliferation of Glia Cells, in vitro. Cellular and Molecular Neurobiology, 2005, 25, 981-993.	3 . 3	51
50	Nuclear Poly(ADP-ribose) Polymerase-1 Rapidly Triggers Mitochondrial Dysfunction. Journal of Biological Chemistry, 2005, 280, 17227-17234.	3.4	134
51	Group I metabotropic glutamate receptors stimulate the activity of poly(ADP-ribose) polymerase in mammalian mGlu1-transfected cells and in cortical cell cultures. Neuropharmacology, 2005, 49, 80-88.	4.1	7
52	Inhibition of Poly(ADP-Ribose) Glycohydrolase by Gallotannin Selectively Up-Regulates Expression of Proinflammatory Genes. Molecular Pharmacology, 2004, 66, 890-898.	2.3	49
53	Stereoselective synthesis and preliminary evaluation of (+)- and ($\hat{a}\in$ ")-3-methyl-5-carboxy-thien-2-yl-glycine (3-MATIDA): identification of (+)-3-MATIDA as a novel mGluR1 competitive antagonist. Il Farmaco, 2004, 59, 93-99.	0.9	15
54	Towards New Neuroprotective Agents: Design and Synthesis of 4H-Thieno[2,3-c]isoquinolin-5-one Derivatives as Potent PARP-1 Inhibitors ChemInform, 2004, 35, no.	0.0	1

#	Article	IF	CITATIONS
55	Differential role of poly(ADP-ribose) polymerase-1in apoptotic and necrotic neuronal death induced by mild or intense NMDA exposure in vitro. Molecular and Cellular Neurosciences, 2004, 25, 172-180.	2.2	37
56	Erythropoietin Attenuates Post-Traumatic Injury in Organotypic Hippocampal Slices. Journal of Neurotrauma, 2004, 21, 1103-1112.	3.4	18
57	Excitotoxicity in Cerebral Ischemia. , 2004, , 171-188.		0
58	Towards new neuroprotective agents: design and synthesis of 4H-thieno[2,3-c] isoquinolin-5-one derivatives as potent PARP-1 inhibitors. Il Farmaco, 2003, 58, 851-858.	0.9	23
59	5-hydroxyindole causes convulsions and increases transmitter release in the CA1 region of the rat hippocampus. British Journal of Pharmacology, 2003, 138, 245-253.	5.4	16
60	Poly(ADP-ribose) polymerase as a key player in excitotoxicity and post-ischemic brain damage. Toxicology Letters, 2003, 139, 153-162.	0.8	38
61	Novel Isoquinolinone-Derived Inhibitors of Poly(ADP-ribose) Polymerase-1: Pharmacological Characterization and Neuroprotective Effects in an in Vitro Model of Cerebral Ischemia. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 943-949.	2.5	65
62	Tryptophan availability selectively limits NO-synthase induction in macrophages. Journal of Leukocyte Biology, 2003, 73, 172-177.	3.3	36
63	Studies on the Neuroprotective Action of Kynurenine Mono-Oxygenase Inhibitors in Post-Ischemic Brain Damage. Advances in Experimental Medicine and Biology, 2003, 527, 127-136.	1.6	31
64	The novel and systemically active metabotropic glutamate 1 (mGlu1) receptor antagonist 3-MATIDA reduces post-ischemic neuronal death. Neuropharmacology, 2002, 42, 741-751.	4.1	67
65	Metabotropic glutamate 1 (mGlu1) receptor antagonists enhance GABAergic neurotransmission: a mechanism for the attenuation of post-ischemic injury and epileptiform activity?. Neuropharmacology, 2002, 43, 119-130.	4.1	57
66	Activation of mGlu1 but not mGlu5 metabotropic glutamate receptors contributes to postischemic neuronal injury in vitro and in vivo. Pharmacology Biochemistry and Behavior, 2002, 73, 439-446.	2.9	42
67	Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures. Journal of Neurochemistry, 2002, 82, 1465-1471.	3.9	51
68	Release of Glutamate from Striatum of Freely Moving Rats by pros-Methylimidazoleacetic Acid. Journal of Neurochemistry, 2002, 64, 788-793.	3.9	8
69	Comet Assay as a Novel Approach for Studying DNA Damage in Focal Cerebral Ischemia: Differential Effects of NMDA Receptor Antagonists and Poly(ADP-Ribose) Polymerase Inhibitors. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 697-704.	4. 3	58
70	Similarities and differences in the neuronal death processes activated by 3OHâ€kynurenine and quinolinic acid. Journal of Neurochemistry, 2001, 77, 1310-1318.	3.9	96
71	Metabotropic glutamate receptors stimulate phospholipase D via different pathways in the adult and neonate rat hippocampus. Neurochemical Research, 2001, 26, 1151-1155.	3.3	18
72	Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. Journal of Neuroimmunology, 2001, 120, 190-198.	2.3	114

#	Article	IF	CITATIONS
73	1-Aminoindan-1,5-dicarboxylic acid and (S)-(+)-2-(3′-carboxybicyclo[1.1.1] pentyl)-glycine, two mGlu1 receptor-preferring antagonists, reduce neuronal death in in vitro and in vivo models of cerebral ischaemia. European Journal of Neuroscience, 1999, 11, 3637-3647.	2.6	103
74	Plasma and Brain Levels of Oxindole in Experimental Chronic Hepatic Encephalopathy: Effects of Systemic Ammonium Acetate and Lâ€√rryptophan. Basic and Clinical Pharmacology and Toxicology, 1999, 85, 138-143.	0.0	3
75	Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. European Journal of Pharmacology, 1999, 375, 87-100.	3.5	282
76	Biochemical and electrophysiological studies on (S)-(+)-2-(3′-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG), a novel mGlu5 receptor agonist endowed with mGlu1 receptor antagonist activity. Neuropharmacology, 1999, 38, 917-926.	4.1	50
77	Quinolinic acid formation in immune-activated mice: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(-3-nitrophenyl) thiazol-2yl]-benzenesulfonamide (Ro 61-8048), two potent and selective inhibitors of kynurenine hydroxylase. Neuropharmacology, 1999, 38, 1225-1233.	4.1	42
78	Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death: time-course and mechanisms. Neuropharmacology, 1999, 38, 1607-1619.	4.1	139
79	The kynurenine metabolic pathway in the eye: studies on 3-hydroxykynurenine, a putative cataractogenic compound. FEBS Letters, 1999, 453, 197-200.	2.8	25
80	(2R,1 S,2 R,3 S)-2-(2 -Carboxy-3 -phenylcyclopropyl)glycine (PCCG-13), the First Potent and Selective Competitive Antagonist of Phospholipase D-Coupled Metabotropic Glutamate Receptors:  Asymmetric Synthesis and Preliminary Biological Properties. Journal of Medicinal Chemistry, 1999, 42, 2716-2720.	6.4	29
81	Tryptophan Metabolism and Hepatic Encephalopathy. Advances in Experimental Medicine and Biology, 1999, , 155-167.	1.6	9
82	Neuroprotective Effects of Kynurenine-3-Hydroxylase Inhibitors in Models of Brain Ischemia. Advances in Experimental Medicine and Biology, 1999, 467, 199-206.	1.6	28
83	Regulation of Quinolinic Acid Synthesis by Mitochondria and O-Methoxybenzoylalanine. Advances in Experimental Medicine and Biology, 1999, 467, 233-239.	1.6	O
84	Electrophysiological studies on oxindole, a neurodepressant tryptophan metabolite. British Journal of Pharmacology, 1998, 125, 1751-1760.	5.4	15
85	Oxindole in pathogenesis of hepatic encephalopathy. Lancet, The, 1998, 351, 1861.	13.7	24
86	Presynaptic mGlu1 type receptors potentiate transmitter output in the rat cortex. European Journal of Pharmacology, 1998, 347, 189-195.	3.5	67
87	Oxindole, a Sedative Tryptophan Metabolite, Accumulates in Blood and Brain of Rats with Acute Hepatic Failure. Journal of Neurochemistry, 1998, 70, 1998-2003.	3.9	44
88	Ultrastructural and Biochemical Studies on the Neuroprotective Effects of Excitatory Amino Acid Antagonists in the Ischemic Rat Retina. Experimental Neurology, 1997, 146, 419-434.	4.1	24
89	Type 2 Metabotropic Glutamate (mGlu) Receptors Tonically Inhibit Transmitter Release in Rat Caudate Nucleus:In VivoStudies with (2S,1′S,2′S,3′R)-2-(2′-carboxy-3′-phenylcyclopropyl)glycine, a New Pote Selective Antagonist. European Journal of Neuroscience, 1997, 9, 1350-1355.	en eta nd	66
90	Identification and Measurement of Oxindole (2-Indolinone) in the Mammalian Brain and Other Rat Organs. Analytical Biochemistry, 1997, 244, 74-79.	2.4	17

#	Article	IF	CITATIONS
91	Studies on the Pharmacological Properties of Oxindole (2-Hydroxyindole) and 5-Hydroxyindole: Are They Involved in Hepatic Encephalopathy?. Advances in Experimental Medicine and Biology, 1997, 420, 57-73.	1.6	10
92	Synthesis and Pharmacological Characterization of All Sixteen Stereoisomers of 2-(2â€-Carboxy-3â€-phenylcyclopropyl)glycine. Focus on (2S,1â€-S,2â€-S,3â€-R)-2-(2â€-Carboxy-3â€-phenylcyclopropyl)glycine, a Novel and Selective Group II Metabotro Glutamate Receptors Antagonist. Journal of Medicinal Chemistry, 1996, 39, 2259-2269.	ppic ⁴	107
93	Metabotropic glutamate receptors, transmitter output and fatty acids: studies in rat brain slices. British Journal of Pharmacology, 1996, 117, 189-195.	5.4	33
94	Pharmacological characterization of metabotropic glutamate receptors coupled to phospholipase D in the rat hippocampus. British Journal of Pharmacology, 1996, 118, 1035-1043.	5.4	68
95	Pharmacological characterization of metabotropic glutamate receptors potentiating NMDA responses in mouse cortical wedge preparations. British Journal of Pharmacology, 1996, 118, 1530-1536.	5.4	31
96	Kynurenine Disposition in Blood and Brain of Mice: Effects of Selective Inhibitors of Kynurenine Hydroxylase and of Kynureninase. Journal of Neurochemistry, 1996, 67, 692-698.	3.9	74
97	Synthesis and activity of enantiopure (S) (m-nitrobenzoyl) alanine, potent kynurenine-3-hydroxylase inhibitor. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1451-1454.	2.2	23
98	NMDA receptor heterogeneity in mammalian tissues: focus on two agonists, (2S,3R,4S) cyclopropylglutamate and the sulfate ester of 4-hydroxy-(S)-pipecolic acid. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 351, 371-6.	3.0	7
99	1-Aminoindan-1,5-dicarboxylic Acid: A Novel Antagonist at Phospholipase C-Linked Metabotropic Glutamate Receptors. Journal of Medicinal Chemistry, 1995, 38, 3717-3719.	6.4	170
100	Comparison of the Neurochemical and Behavioral Effects Resulting from the Inhibition of Kynurenine Hydroxylase and/or Kynureninase. Journal of Neurochemistry, 1995, 65, 1176-1183.	3.9	93
101	New Perspectives in the Pharmacology of Parenchimal Brain Anoxia-Ischemia. , 1995, , 255-264.		0
102	Modulation of the Kynurenine Pathway in Search for New Neuroprotective Agents. Synthesis and Preliminary Evaluation of (m-Nitrobenzoyl) alanine, a Potent Inhibitor of Kynurenine-3-hydroxylase. Journal of Medicinal Chemistry, 1994, 37, 647-655.	6.4	140
103	Sulfate esters of hydroxy amino acids as stereospecific glutamate receptor agonists. European Journal of Pharmacology, 1994, 251, 201-207.	3.5	18
104	Glutamate receptor antagonists protect against ischemia-induced retinal damage. European Journal of Pharmacology, 1994, 271, 489-495.	3.5	40
105	The depolarization-induced outflow of d-[3H]aspartate from rat brain slices is modulated by metabotropic glutamate receptors. Neurochemistry International, 1994, 24, 525-532.	3.8	29
106	Definition of a pharmacophore for the metabotropic glutamate receptors negatively linked to adenylyl cyclase. Bioorganic and Medicinal Chemistry, 1993, 1, 259-265.	3.0	21
107	Fidia and neuroscience. Nature, 1993, 366, 399-399.	27.8	2
108	Pharmacological characterization of the metabotropic glutamate receptor inhibiting <scp>d</scp> â€[³ H]â€aspartate output in rat striatum. British Journal of Pharmacology, 1993, 110, 1407-1412.	5.4	65

#	Article	IF	CITATIONS
109	Photochemically-induced lesion of the rat retina: a quantitative model for the evaluation of ischemia-induced retinal damage. Vision Research, 1993, 33, 1887-1891.	1.4	16
110	Excitatory amino acids and free radicals in the genesis of ischemic neuronal death., 1993,, 77-82.		2
111	GM1 ganglioside reduces ischemia-induced excitatory amino acid output: A microdialysis study in the gerbil hippocampus. Neuroscience Letters, 1992, 134, 171-174.	2.1	29
112	General anaesthetics inhibit the responses induced by glutamate receptor agonists in the mouse cortex. Neuroscience Letters, 1992, 146, 21-24.	2.1	82
113	Thiokynurenates: a new group of antagonists of the glycine modulatory site of the NMBA receptor. European Journal of Pharmacology, 1991, 199, 227-232.	3.5	34
114	Ischemia does not induce the release of excitotoxic amino acids from the hippocampus of newborn rats. Developmental Brain Research, 1991, 60, 235-240.	1.7	44
115	Modulation of Quinolinic and Kynurenic Acid Content in the Rat Brain: Effects of Endotoxins and Nicotinylalanine. Journal of Neurochemistry, 1991, 57, 1630-1635.	3.9	100
116	Glycine and kynurenate modulate the glutamate receptors in the myenteric plexus and in cortical membranes. European Journal of Pharmacology, 1989, 163, 123-126.	3 . 5	26
117	Systemic treatments with GM1 ganglioside reduce quinolinic acid-induced striatal lesions in the rat. European Journal of Pharmacology, 1989, 174, 123-125.	3 . 5	27
118	Indolpyruvic acid administration increases the brain content of kynurenic acid. Biochemical Pharmacology, 1989, 38, 2405-2409.	4.4	38
119	Quinoxalines interact with the glycine recognition site of NMDA receptors: studies in guineaâ€pig myenteric plexus and in rat cortical membranes. British Journal of Pharmacology, 1989, 98, 1281-1286.	5 . 4	26
120	Excitatory Amino Acid Release from Rat Hippocampal Slices as a Consequence of Free-Radical Formation. Journal of Neurochemistry, 1988, 51, 1960-1963.	3.9	204
121	Kynurenic acid is present in the rat brain and its content increases during development and aging processes. Neuroscience Letters, 1988, 94, 145-150.	2.1	101
122	Morphine withdrawal in vitro: Potentiation of agonist-dependent polyphosphoinositide breakdown. European Journal of Pharmacology, 1988, 149, 297-306.	3.5	21
123	Differential actions of neurotrophic factors on lesion-induced damage of the serotonergic neurons projecting to the hippocampus. Brain Research, 1988, 458, 348-352.	2.2	6
124	Clinical Pharmacokinetics of Valproic Acid - 1988. Clinical Pharmacokinetics, 1988, 15, 367-389.	3 . 5	181
125	Morphine withdrawal in cortical slices: suppression by Ca ²⁺ â€channel inhibitors of abstinenceâ€induced [³ H]â€noradrenaline release. British Journal of Pharmacology, 1988, 93, 535-540.	5.4	31
126	Hepatic encephalopathy: Lack of changes of \hat{I}^3 -aminobutyric acid content in plasma and cerebrospinal fluid. Hepatology, 1987, 7, 816-820.	7.3	34

FLAVIO MORONI

#	Article	IF	CITATIONS
127	The excitotoxin quinolinic acid is present in the brain of several mammals and its cortical content increases during the aging process. Neuroscience Letters, 1984, 47, 51-55.	2.1	101
128	8-phenyltheophylline potentiates the electrical activity evoked in hippocampal slices. European Journal of Pharmacology, 1984, 103, 177-180.	3.5	12
129	Adenosine decreases aspartate and glutamate release from rat hippocampal slices. European Journal of Pharmacology, 1984, 104, 19-26.	3.5	334