
Paul Grassia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/113018/publications.pdf Version: 2024-02-01

DALLI C.DASSIA

#	Article	IF	CITATIONS
1	Foam stability in the presence and absence of hydrocarbons: From bubble- to bulk-scale. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 514-526.	2.3	194
2	Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell. Journal of Colloid and Interface Science, 2016, 462, 288-296.	5.0	76
3	Investigation of foam flow in a 3D printed porous medium in the presence of oil. Journal of Colloid and Interface Science, 2017, 490, 850-858.	5.0	66
4	Analysis of a model for foam improved oil recovery. Journal of Fluid Mechanics, 2014, 751, 346-405.	1.4	43
5	Applicability of various pretreatment techniques to enhance the anaerobic digestion of Palm oil Mill effluent (POME): A review. Journal of Environmental Chemical Engineering, 2019, 7, 103310.	3.3	42
6	Viscous froth lens. Physical Review E, 2006, 74, 051403.	0.8	29
7	Foam Flow Investigation in 3D-Printed Porous Media: Fingering and Gravitational Effects. Industrial & Engineering Chemistry Research, 2018, 57, 7275-7281.	1.8	29
8	A foam film propagating in a confined geometry: Analysis via the viscous froth model. European Physical Journal E, 2008, 25, 39-49.	0.7	27
9	A simplified parameter extraction technique using batch settling data to estimate suspension material properties in dewatering applications. Chemical Engineering Science, 2008, 63, 1971-1986.	1.9	26
10	Surfactant transport onto a foam lamella. Chemical Engineering Science, 2013, 102, 405-423.	1.9	25
11	Effects of Pore Geometry on Flowing Foam Dynamics in 3D-Printed Porous Media. Transport in Porous Media, 2018, 124, 903-917.	1.2	24
12	Viscous froth simulations with surfactant mass transfer and Marangoni effects: Deviations from Plateau's rules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382, 8-17.	2.3	20
13	Foam Stability Influenced by Displaced Fluids and by Pore Size of Porous Media. Industrial & Engineering Chemistry Research, 2019, 58, 1068-1074.	1.8	19
14	Viscous froth model for a bubble staircase structure under rapid applied shear: An analysis of fast flowing foam. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348, 49-58.	2.3	18
15	The impact of thermal pretreatment on various solid-liquid ratios of palm oil mill effluent (POME) for enhanced thermophilic anaerobic digestion performance. Journal of Cleaner Production, 2020, 261, 121159.	4.6	18
16	Foam improved oil recovery: Foam front displacement in the presence of slumping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 473, 123-132.	2.3	16
17	A Princen hexagonal foam out of physicochemical equilibrium. Journal of Rheology, 2012, 56, 501-526.	1.3	14
18	Prediction of thickener performance with aggregate densification. Chemical Engineering Science, 2013, 101, 346-358.	1.9	14

PAUL GRASSIA

#	Article	IF	CITATIONS
19	Relaxation of the topological T1 process in a two-dimensional foam. European Physical Journal E, 2012, 35, 64.	0.7	12
20	Mathematical modelling of batch sedimentation subject to slow aggregate densification. Chemical Engineering Science, 2015, 128, 54-63.	1.9	12
21	Modelling relaxation following T1 transformations of foams incorporating surfactant mass transfer by the Marangoni effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438, 77-84.	2.3	11
22	The influence of different solid-liquid ratios on the thermophilic anaerobic digestion performance of palm oil mill effluent (POME). Journal of Environmental Management, 2020, 257, 109996.	3.8	11
23	Foam front propagation in anisotropic oil reservoirs. European Physical Journal E, 2016, 39, 42.	0.7	10
24	Designing thickeners by matching hindered settling and gelled suspension zones in the presence of aggregate densification. Chemical Engineering Science, 2015, 134, 297-307.	1.9	9
25	Is the dewatering of Palm Oil Mill Effluent (POME) feasible? Effect of temperature on POME's rheological properties and compressive behavior. Chemical Engineering Science, 2019, 202, 519-528.	1.9	9
26	Modelling foam improved oil recovery within a heterogeneous reservoir. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 43-52.	2.3	8
27	Foam front advance during improved oil recovery: similarity solutions at early times near the top of the front. Journal of Fluid Mechanics, 2017, 828, 527-572.	1.4	8
28	Effect of surfactant redistribution on the flow and stability of foam films. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190637.	1.0	8
29	Foam-improved oil recovery: Modelling the effect of an increase in injection pressure. European Physical Journal E, 2015, 38, 67.	0.7	7
30	Streamline-averaged mass transfer in a circulating drop. Chemical Engineering Science, 2018, 190, 190-219.	1.9	6
31	Comparing and Contrasting Travelling Wave Behaviour for Groundwater Flow and Foam Drainage. Transport in Porous Media, 2021, 137, 255-280.	1.2	6
32	Viscous froth model applied to the motion and topological transformations of two-dimensional bubbles in a channel: three-bubble case. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210642.	1.0	6
33	Diffusion of curvature on a sheared semi-infinite film. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130359.	1.0	5
34	Motion of an oil droplet through a capillary with charged surfaces. Journal of Fluid Mechanics, 2019, 866, 721-758.	1.4	5
35	Enhancing the biogas production and the treated effluent quality via an alternative Palm Oil Mill Effluent (POME) treatment process: Integration of thermal pretreatment and dewatering. Biomass and Bioenergy, 2021, 151, 106167.	2.9	5
36	Foam front displacement in improved oil recovery in systems with anisotropic permeability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 534, 44-51.	2.3	3

PAUL GRASSIA

#	Article	IF	CITATIONS
37	Viscous and electro-osmotic effects upon motion of an oil droplet through a capillary. Journal of Fluid Mechanics, 2020, 899, .	1.4	3
38	Modelling foam improved oil recovery: towards a formulation of pressure-driven growth with flow reversal. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200573.	1.0	3
39	Pressure-driven growth in strongly heterogeneous systems. European Physical Journal E, 2018, 41, 10.	0.7	2
40	Foam–liquid front motion in Eulerian coordinates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180290.	1.0	2
41	Surfactant transport between foam films. Journal of Fluid Mechanics, 2021, 928, .	1.4	2
42	Electro-osmotic and viscous effects upon pressure to drive a droplet through a capillary. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210801.	1.0	2
43	Breakdown of similarity solutions: a perturbation approach for front propagation during foam-improved oil recovery. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200691.	1.0	1
44	Similarity solutions for early-time constant boundary flux imbibition in foams and soils. European Physical Journal E, 2021, 44, 111.	0.7	0
45	Analysis of a model for surfactant transport around aÂfoam meniscus. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	0